MHB Tonnie's question at Yahoo Answers regarding a Bernoulli equation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Determine the solution to the following differential equation.?

Determine the solution to the following differential equation.

y' + y/x = y^2

Here is a link to the question:

Determine the solution to the following differential equation.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Tonnie,

A first order ODE that can be written in the form:

$$\frac{dy}{dx}+P(x)y=Q(x)y^n$$

where $P(x)$ and $Q(x)$ are continuous on an interval $(a,b)$ and $n$ is a real number, is called a Bernoulli equation.

This equation was proposed for solution by James Bernoulli in 1695. It was solved by his brother John Bernoulli. James and John were two of eight mathematicians in the Bernoulli family. In 1696 Gottfried Leibniz showed that the Bernoulli equation can be reduced to a linear equation by making the substitution $v=y^{1-n}$.

We are given to solve:

(1) $$\frac{dy}{dx}+\frac{1}{x}y=y^2$$

Dividing through by $y^2$ (observing we are losing the trivial solution $y\equiv0$), we obtain:

(2) $$y^{-2}\frac{dy}{dx}+\frac{1}{x}y^{-1}=1$$

Using the substitution of Leibniz, i.e., $v=y^{-1}$, we find via the chain rule that:

$$\frac{dv}{dx}=-y^{-2}\frac{dy}{dx}$$

and (2) becomes:

(3) $$\frac{dv}{dx}-\frac{1}{x}v=-1$$

Now we have a linear equation in $v$. Computing the integrating factor, we find:

$$\mu(x)=e^{-\int\frac{dx}{x}}=\frac{1}{x}$$

Multiplying (3) by this integrating factor, we obtain:

$$\frac{1}{x}\frac{dv}{dx}-\frac{1}{x^2}v=-\frac{1}{x}$$

Rewriting the left hand side as the differentiation of a product, we have:

$$\frac{d}{dx}\left(\frac{v}{x} \right)=-\frac{1}{x}$$

Integrating with respect to $x$, there results:

$$\int\,d\left(\frac{v}{x} \right)=-\int\frac{1}{x}\,dx$$

$$\frac{v}{x}=-\ln|x|+C$$

$$v=x\left(C-\ln|x| \right)$$

Back-substituting for $v$, we have:

$$\frac{1}{y}=x\left(C-\ln|x| \right)$$

Hence:

$$y=\frac{1}{x\left(C-\ln|x| \right)}$$

To Tonnie and any other guests viewing this topic, I invite and encourage you to post other differential equations problems in our http://www.mathhelpboards.com/f17/ forum.

Best Regards,

Mark.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top