- #1
swotty
- 4
- 1
Homework Statement
An object of mass 1000 kg is lifted by means of a steel lifting cable being wound round a drum of diameter 2.5m mounted on a horizontal shaft. The drum and shaft have a mass of 1000 kg and a radius of gyration of 1.0 m. What is the torque required to give the object an upward acceleration of 0.75 m/s^2
Homework Equations
Tension in cable ##Fc=mg + ma##
Moment of inertia ##I=mk^2##
Torque ##T=I\alpha=Fr##
Linear acceleration ##a=r\alpha##
The Attempt at a Solution
[/B]
My problem is I don't get the answer given in the textbook. Which is 11.2 kNm. I always assume at first that I have missed something. But I've tried various tacks and still do not get this answer. Am I missing something?
Here is my calculations:
Tension in cable due to mass of object and acceleration upwards:
$$F_{c}=1000\times9.81 + 1000\times0.75$$
$$=10560N$$
Torque on rim of drum to create tension:
$$T_1=Fc\times r $$##(r=radius of drum)##
$$T_1=10560\times 1.25$$
$$=13.2\times10^3 Nm$$
Torque to accelerate drum:
$$T_2=I\times\alpha$$
$$I=1000\times 1^2=1000 kg m^2$$
acceleration Angular
$$\alpha = a/r$$
$$ \alpha =0.75/1.25$$
$$\alpha = 0.6 rad/s^2$$
$$T_2=1000\times0.6$$
$$T_2=600Nm$$
Total Torque to accelerate drum and object:
$$T_n=T_1+T_2$$
$$T_n=13.2\times10^3+600$$
$$T_n=13.8kNm$$