Total energy of a wave on a string

AI Thread Summary
The discussion centers on the calculation of the total energy of a wave on a string, where the user derived an expression yielding a coefficient of 2, while the book's answer key states it should be 4. The user initially overlooked the importance of the length of the wave train, which is crucial for calculating total energy. It was clarified that the total energy depends on the number of cycles in the wave train, which was indicated in the problem statement but not initially considered. The user acknowledged this oversight and recognized the need to account for the complete problem context. Understanding the relationship between wave cycles and total energy is essential for accurate calculations.
Brian_D
Gold Member
Messages
77
Reaction score
16
Homework Statement
Consider a wave train propagating as a sine wave along a string. Obtain an expression for the total energy in this wave train, in terms of the string tension F, the wave amplitude A and the wavelength lambda.
Relevant Equations
##\mathit{total} \mathit{energy} \mathit{of} a \mathit{wave}= 0.5 \mu A^{2} \omega^{2} \lambda##

##\mu =\frac{F}{V^{2}}##

##\omega =\frac{2 \pi\mathrm{V}}{\lambda}##
P.S. I tried to clean up this post, but the program does not seem to be working correctly. When I click on "preview" I get one thing, but when I go back to my original text, it does not match the preview.
I plugged the expressions for mu and omega into the equation for total energy and simplified. I got ##\textit{total\_}\mathit{energy}=\frac{2 \pi^{2} A^{2} F}{\lambda}##. However, the book answer key says, ##\textit{total\_}\mathit{energy}=\frac{4 \pi^{2} A^{2} F}{\lambda}##. (The book gives 4 as the coefficient, not 2). Is the answer key wrong? If not, where was my mistake.I talenergyofawave=0.5μA2ω2
ω=2πVλ
 
Physics news on Phys.org
Brian_D said:
Relevant Equations: total energy of a wave ## = 0.5 \mu A^{2} \omega^{2} \lambda##
This expression does not give the total energy of a wavetrain. It provides the energy of a specific length of the wavetrain. See your textbook to determine this length.

The question asks for the total energy in the wave train. This will depend on the overall length of the wavetrain, but this length is not given in the problem statement. Check to make sure that you have provided the complete problem statement.
 
Thank you, TSny, you have clarified the whole thing. The problem statement indicated two cycles and included a diagram showing two cycles; I modified the problem statement because I didn't want to have to reproduce the diagram. I didn't think the number of cycles mattered, and that was my mistake.
 
  • Like
Likes WWGD and TSny
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top