Brian_D
Gold Member
- 68
- 13
- Homework Statement
- Consider a wave train propagating as a sine wave along a string. Obtain an expression for the total energy in this wave train, in terms of the string tension F, the wave amplitude A and the wavelength lambda.
- Relevant Equations
- ##\mathit{total} \mathit{energy} \mathit{of} a \mathit{wave}= 0.5 \mu A^{2} \omega^{2} \lambda##
##\mu =\frac{F}{V^{2}}##
##\omega =\frac{2 \pi\mathrm{V}}{\lambda}##
P.S. I tried to clean up this post, but the program does not seem to be working correctly. When I click on "preview" I get one thing, but when I go back to my original text, it does not match the preview.
I plugged the expressions for mu and omega into the equation for total energy and simplified. I got ##\textit{total\_}\mathit{energy}=\frac{2 \pi^{2} A^{2} F}{\lambda}##. However, the book answer key says, ##\textit{total\_}\mathit{energy}=\frac{4 \pi^{2} A^{2} F}{\lambda}##. (The book gives 4 as the coefficient, not 2). Is the answer key wrong? If not, where was my mistake.I talenergyofawave=0.5μA2ω2
ω=2πVλ
I plugged the expressions for mu and omega into the equation for total energy and simplified. I got ##\textit{total\_}\mathit{energy}=\frac{2 \pi^{2} A^{2} F}{\lambda}##. However, the book answer key says, ##\textit{total\_}\mathit{energy}=\frac{4 \pi^{2} A^{2} F}{\lambda}##. (The book gives 4 as the coefficient, not 2). Is the answer key wrong? If not, where was my mistake.I talenergyofawave=0.5μA2ω2
ω=2πVλ