Undergrad Transformation of connection coefficients

Click For Summary
The discussion centers on the transformation of connection coefficients in the context of differential geometry, specifically referencing Sean Carroll's notes. Participants seek clarification on the inclusion of a specific term in the transformation relation for vectors. The transformation is derived using the Leibniz rule and involves expressing partial derivatives in terms of one another. A key point is the application of the chain rule for partial derivatives, confirming the correctness of the transformation. The conversation emphasizes understanding the mathematical steps leading to the transformation of connection coefficients.
accdd
Messages
95
Reaction score
20
I don't understand why the highlighted term is there.
This image was taken from Sean Carroll's notes available here: preposterousuniverse.com/wp-content/uploads/grnotes-three.pdf
formule.png
 
Physics news on Phys.org
This follows directly (together with the first term) from writing out the transformation relation ##V^{\nu’} = \frac{\partial x^{\nu’}}{\partial x^\nu} V^\nu## and applying the Leibniz rule.
 
  • Like
Likes accdd
Thanks for the answer, could you show me the steps to get to the result?
 
I think it would be more instructive if you do what I proposed starting from the first line in (3.3) and show us the steps until you get stuck.
 
  • Like
Likes strangerep and accdd
$$V^{\nu'}=\frac{\partial x^{\nu'}}{\partial x^{\nu}}V^{\nu}$$
$$
\nabla_{\mu'}V^{\nu'}=\partial_{\mu'}(\frac{\partial x^{\nu'}}{\partial x^{\nu}}V^{\nu})+\Gamma^{\nu'}_{\mu'\lambda'}(\frac{\partial x^{\lambda'}}{\partial x^{\lambda}}V^{\lambda}) =\partial_{\mu'}(\frac{\partial x^{\nu'}}{\partial x^{\nu}})V^{\nu}+\frac{\partial x^{\nu'}}{\partial x^{\nu}} \partial_{\mu'}V^{\nu}+\Gamma^{\nu'}_{\mu'\lambda'}\frac{\partial x^{\lambda'}}{\partial x^{\lambda}}V^{\lambda}=
$$
 
Ok. So the piece that you're missing is expressing ##\partial_{\mu'}## in terms of ##\partial_\mu##. Are you familiar with any way to relate those two partial derivatives?
 
  • Like
Likes accdd
Is this the correct transformation?
$$
\partial_{\mu'}=\frac{\partial x^\mu}{\partial x^{\mu'}}\partial_\mu
$$
$$
\partial_{\mu'}(\frac{\partial x^{\nu'}}{\partial x^{\nu}})V^{\nu}+\frac{\partial x^{\nu'}}{\partial x^{\nu}} \partial_{\mu'}V^{\nu}+\Gamma^{\nu'}_{\mu'\lambda'}\frac{\partial x^{\lambda'}}{\partial x^{\lambda}}V^{\lambda}= \frac{\partial x^\mu}{\partial x^{\mu'}}\partial_\mu(\frac{\partial x^{\nu'}}{\partial x^{\nu}})V^{\nu}+\frac{\partial x^{\nu'}}{\partial x^{\nu}} \frac{\partial x^\mu}{\partial x^{\mu'}}\partial_\mu V^{\nu}+\Gamma^{\nu'}_{\mu'\lambda'}\frac{\partial x^{\lambda'}}{\partial x^{\lambda}}V^{\lambda}
$$

so the first line of 3.3 should be more clearly:
$$
\nabla_{\mu'}V^{\nu'}=(\frac{\partial x^\mu}{\partial x^{\mu'}}\partial_\mu)(\frac{\partial x^{\nu'}}{\partial x^{\nu}}V^{\nu})+\Gamma^{\nu'}_{\mu'\lambda'}(\frac{\partial x^{\lambda'}}{\partial x^{\lambda}}V^{\lambda})
$$
 
Last edited:
accdd said:
Is this the correct transformation?
$$
\partial_{\mu'}=\frac{\partial x^\mu}{\partial x^{\mu'}}\partial_\mu
$$
Yes. That is the chain rule for partial derivatives.
 
  • Like
Likes accdd

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
19
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K