What is the most straightforward way of transforming a BCS type state, [itex]\left| \Phi \right\rangle = \prod(u_k + v_k F^{\dagger}_{k} F^{\dagger}_{-k}) \left| vac \right\rangle[/itex], to real space?(adsbygoogle = window.adsbygoogle || []).push({});

Would it be valid to transform states of the form

[itex] F^{\dagger}_k F^{\dagger}_{-k} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m},~~~~F^{\dagger}_{k_1} F^{\dagger}_{-k_1} F^{\dagger}_{k_2} F^{\dagger}_{-k_2} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m} a^{\dagger}_{p} a^{\dagger}_{q}, ~~[/itex] etc.,

separately using multidimensional discrete FT? Is there an easier/more efficient way? Thanks for your help!

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Transforming BCS state to real space

**Physics Forums | Science Articles, Homework Help, Discussion**