Derivation of the Heisenberg equation for electron density

In summary, the conversation is discussing the calculation of the equation of motion for electrons' density in the context of studying plasmons from "Haken-Quantum Field Theory of Solids". The equation of motion is given by the equation for the fermionic operator, which involves creation and annihilation operators and follows the Heisenberg equation. The Hamiltonian operator is also discussed, and there are some doubts and discrepancies between the calculations and the solution in the book. The person is seeking clarification and guidance on how to find the correct solution.f
  • #1
I'm studying plasmons from "Haken-Quantum Field Theory of Solids", and i need some help in the calculation of the equation of motion of eletrons' density
\begin{equation}
\hat{\rho}_{\overrightarrow{q}} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}}
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}}
\label{eq:rhoaadag}
\end{equation}
where ##\hat{a}## and ##\hat{a}^{\dagger}## are fermionic operator
\begin{align}
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = \delta_{\overrightarrow{k'},\overrightarrow{k}}
\\
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}_{\overrightarrow{k'}}\right\rbrace = \left\lbrace\hat{a}^{\dagger}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = 0 \quad \forall \overrightarrow{k},\overrightarrow{k}'
\label{eq:anticomm}
\end{align}
The book starts from the Heisneberg equation for ##\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}\hat{a}_{\overrightarrow{k}}##
\begin{equation}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right) = \left[\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}},\hat{H}\right]
\label{eq:eqmotopre}
\tag{4}
\end{equation}
where the Hamiltonian operator is
\begin{equation}
\begin{aligned}
\hat{H} = \int d\overrightarrow{r} \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \left(-\frac{\hbar^2}{2 m^*} \nabla^2 \right) \hat{\psi}
\left(\overrightarrow{r}\right) + \\
\frac{1}{2}\int\int d\overrightarrow{r} d\overrightarrow{r}' \hat{\psi}^{\dagger}\left(\overrightarrow{r}'\right) \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \frac{e^2}{|\overrightarrow{r}'-\overrightarrow{r}|} \hat{\psi}\left(\overrightarrow{r}\right) \hat{\psi}\left(\overrightarrow{r}'\right)
\end{aligned}
\label{eq:hsecquant}
\end{equation}
with
\begin{equation}
\hat{\psi}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} \exp\left[i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:annichila}
\end{equation}
\begin{equation}
\hat{\psi}^{\dagger}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}^{\dagger}_{\overrightarrow{k}} \exp\left[- i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:crea}
\end{equation}
The first doubt is on the Hamiltonian operator rewritten in terms of creation and annihilation operator.
According to my calculations, the Hamiltonian operator is
\begin{equation}
\hat{H}=\sum_{\overrightarrow{k}}
E_{\overrightarrow{k}}\,
\hat{a}^{\dagger}_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} + \frac{1}{2} \sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}\,
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}^{\dagger}_{\overrightarrow{k}_2} \hat{a}_{\overrightarrow{k}_3} \hat{a}_{\overrightarrow{k}_4}
\label{eq:hamampiezze}
\end{equation}
where
\begin{equation}
v_{q'} = \frac{4\pi e^2}{V q'^2};\quad \overrightarrow{q}'=\overrightarrow{k}_1 - \overrightarrow{k}_4
\label{eq:vq}
\end{equation}
while the book states that
$$
\overrightarrow{q}'=\overrightarrow{k}_1 + \overrightarrow{k}_3 - \overrightarrow{k}_2 - \overrightarrow{k}_4
$$
I ignore this thing, so i calculate the commutator in the Heisenberg equation
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
+
%prima somma ps
& \frac{1}{2}
\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
\delta_{\overrightarrow{k}_2,\overrightarrow{k}_3}
%%%%argomento ps
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
\label{eq:primo}
\\
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondo}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:terzo}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:quarto}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4 - \overrightarrow{q}}
\label{eq:quinto}
\end{align*}
the sum with the commutator
$$
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
$$
is equal to zero.

Second doubt : I exchange the indices in the last two sums (can i do it ?)

In the second to last sum, i exchange \[\overrightarrow{k}_1\] with ##\overrightarrow{k}_2## and $\overrightarrow{k}_3$ with $\overrightarrow{k}_4$, while, in the last sum, ##\overrightarrow{k}_3## with $\overrightarrow{k}_4$ and $\overrightarrow{k}_1## with ##\overrightarrow{k}_2##
\begin{align*}
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:primosec}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondosec}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\label{eq:terzosec}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q}}
\label{eq:quartosec}
\end{align*}
i manipulate them, but i don't find the solution of the book, that is
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
%ss
\\
&+\sum_{k', q'}
v_{q'} \;
%arg ss
\left[\left(\hat{a}^{\dagger}_{k + q}
\hat{a}_{k + q'}
\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\right)
-
\left(\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\hat{a}^{\dagger}_{k + q- q'}
\hat{a}_k\right)
\right]
\end{align*}
Am I on the right way? Can you give me some hint in order to find the solution of the book?

Thank you for who will answer me
 
  • #3
Please post for future generations of posters... I might be interested in the future, but not in the near 5-10 years. :-)
 
  • Like
Likes GiovanniNunziante

Suggested for: Derivation of the Heisenberg equation for electron density

Replies
1
Views
749
Replies
20
Views
1K
Replies
7
Views
1K
Replies
5
Views
788
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top