MHB Transforming Trigonometeric Identities II

  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    identities
Drain Brain
Messages
143
Reaction score
0
Transform the left member to the right member.

$\frac{\left(\sin^{2}(\phi)\cos^{2}(\phi)+\cos^{4}(\phi)+2\cos^{2}(\phi)+\sin^{2}(\phi)\right)}{1-\tan^{2}(\phi)}=\frac{3+\tan^{2}(\phi)}{1-\tan^{4}(\phi)}$

I begin by regrouping the numerator of the left member$\frac{\left(\left(\sin^{2}(\phi)\cos^{2}(\phi)+\cos^{4}(\phi)\right)+2\cos^{2}(\phi)+\sin^{2}(\phi)\right)}{1-\tan^{2}(\phi)}$

then factoring out $\cos^{2}(\phi)$ I get,$\frac{\left(\cos^{2}(\phi)\left(\sin^{2}(\phi)+\cos^{2}(\phi)\right)+2\cos^{2}(\phi)+\sin^{2}(\phi)\right)}{1-\tan^{2}(\phi)}$

using Pythagorean identity

$\frac{\left(\cos^{2}(\phi)(1)+2\cos^{2}(\phi)+\sin^{2}(\phi)\right)}{1-\tan^{2}(\phi)}=\frac{\left(3\cos^{2}(\phi)+\sin^{2}(\phi)\right)}{1-\tan^{2}(\phi)}$knowing that $\cot^{2}(\phi)\sin^{2}(\phi)=\cos^{2}(\phi)$ and $\tan^{2}(\phi)(\cos^{2}(\phi)=\sin^{2}(\phi)$ I will replace the terms in the numerator with these relations.

$\frac{\left(3\cot^{2}(\phi)\sin^{2}(\phi)+\tan^{2}(\phi)(\cos^{2}\right)}{1-\tan^{2}(\phi)}$

I will now express $\cot^{2}(\phi)$ in terms of tan,$\frac{\left(\frac{3}{tan^{2}(\phi)}\sin^{2}(\phi)+\tan^{2}(\phi)\cos^{2}(\phi)\right)}{1-\tan^{2}(\phi)}$

factoring out $\frac{3}{tan^{2}(\phi)}$

$\frac{\frac{1}{tan^{2}(\phi)}\left(3\sin^{2}(\phi)+\tan^{4}(\phi)\cos^{2}(\phi)\right)}{1-\tan^{2}(\phi)}$

placing $\tan^{2}(\phi)$ in the numerator and distributing into the denominator I have

$\frac{\left(3\sin^{2}(\phi)+\tan^{4}(\phi)\cos^{2}(\phi)\right)}{\tan^{2}(\phi)-\tan^{4}(\phi)}$

further manipulation of the second term in the numerator and factoring out $\sin^{2}(\phi)$ I wound up with,

$\frac{\sin^{2}(\phi)\left(3+\tan^{2}(\phi)\right)}{\tan^{2}(\phi)-\tan^{4}(\phi)}$

From here I couldn't go any further. What should I do?
 
Mathematics news on Phys.org
You are good up to this point:

$$\frac{\sin^2(\phi)\left(3+\tan^{2}(\phi)\right)}{\tan^{2}(\phi)-\tan^{4}(\phi)}$$

Divide numerator and denominator by $\sin^2(\phi)$ to get:

$$\frac{3+\tan^{2}(\phi)}{\sec^2(\phi)\left(1-\tan^{2}(\phi)\right)}$$

Now, apply a Pythagorean identity to $\sec^2(\phi)$, and what is the result?
 
Hello, Drain Brain!
Prove: $\;\dfrac{\sin^2\!x\cos^2\!x+\cos^4\!x+2\cos^2\!x+\sin^2\!x}{1-\tan^2\!x)}\:=\:\dfrac{3+\tan^2\!x}{1-\tan^4\!x}$
You did fine, up to: $\;\dfrac{3\cos^2\!x+\sin^2\!x}{1-\tan^2\!x}$

Multiply by $\frac{1+\tan^2\!x}{1+\tan^2\!x}$

$\quad\dfrac{1+\tan^2\!x}{1+\tan^2\!x}\cdot\dfrac{3\cos^2\!x + \sin^2\!x}{1-\tan^2\!x} \;=\;\dfrac{\sec^2\!x(3\cos^2\!x + \sin^2\!x)}{1-\tan^4\!x}$

$\quad =\;\dfrac{3\sec^2\!x\cos^2\!x +\sec^2\!x\sin^2\!x}{1-\tan^4\!x} \;=\; \dfrac{3 + \tan^2\!x}{1-\tan^4\!x}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
11
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
7
Views
1K
Replies
5
Views
1K
Replies
1
Views
3K
Replies
5
Views
1K
Replies
2
Views
1K
Back
Top