I Translate compound proposition p → q (implication) to p↓q question

VinnyW
Messages
4
Reaction score
0
TL;DR Summary
How to simplify ((p ↓ p) ↓ q) ↓ (p ↓ p) ↓ q) ) to F ↓ (( F ↓ q ) ↓ q ), whereas p and q are atomic propositions and F, probably, is contradiction.
I hope someone can help me or point me in the right direction.

I am reading Discrete Mathematics with its Applications by Rosen. I am trying to self learn discrete math. I am actually able to do most questions but I have a question about a solution (not the question itself.)

The question is (Section 1.3 Foundations: Logic and Proofs. Question 51)

Question: Find a compound proposition logically equivalent to p → q using only the logical operator ↓

My answer
:

I know

p → q ≡ ¬ p ∨ q

and

p ↓ p ≡ ¬ p

By combining them, I got the answer:

((p ↓ p) ↓ q) ↓ (p ↓ p) ↓ q) )

which is the same answer as the one in the solution manual; however, the manual also lists:

F ↓ (( F ↓ q ) ↓ q )

I know F is contradiction.

How can I simplify

((p ↓ p) ↓ q) ↓ (p ↓ p) ↓ q) )

to

F ↓ (( F ↓ q ) ↓ q )
 
Physics news on Phys.org
I'm confused, the last expression has no dependency on p at all? That can't possibly be the same thing logically.
 
VinnyW said:
Summary:: How to simplify ((p ↓ p) ↓ q) ↓ (p ↓ p) ↓ q) ) to F ↓ (( F ↓ q ) ↓ q ), whereas p and q are atomic propositions and F, probably, is contradiction.

p ↓ p ≡ ¬ p
What does the notation p ↓ p mean, particularly the down arrow? I've never seen that notation before.
 
It means nor
 
The following page should be useful in that case:
https://en.wikipedia.org/wiki/NOR_logic

In "boolean algebra" notation we get the following as equivalent (following the above page):
##p \rightarrow q##
##p'+q##
##(p \,\, \mathrm{nor} \,\, p)+q##

Now one can expand the last expression using the "OR gate" equivalence.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top