MHB Translation Invariance of Outer Measure .... Axler, Result 2.7 ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Sheldon Axler's book: Measure, Integration & Real Analysis ... and I am focused on Chapter 2: Measures ...

I need help with the proof of Result 2.7 ...

Result 2.7 and its proof read as follows:
Axler - Result  2.7 - outer measure is translation invariant .png
In the above proof by Axler we read the following:

" ... ... Thus

... $\mid t + A \mid \leq \sum_{ k = 1 }^{ \infty } l ( t + I_k ) = \sum_{ k = 1 }^{ \infty } l ( I_k )$

Taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$. ... ..."Can someone please explain exactly how/why taking the infimum of the last term over all sequences $I_1, I_2, ... $ of open intervals whose union contains $A$, we have $\mid t + A \mid \leq \mid A \mid$ ... ?... Peter
 
Physics news on Phys.org
The inequality $|t+A| \leqslant \sum_{k=1}^\infty l(I_k)$ shows that $|t+A|$ is a lower bound for the set of sums of the form $\sum_{k=1}^\infty l(I_k)$. The inf of that set is by definition the greatest lower bound of the set. So any other lower bound, in particular $|t+A|$, is less than or equal to that inf.

Peter, it seems to me that most of your recent questions have been, in one form or another, instances of the general principle that "weak inequalities are preserved by limits": if every member of a set satisfies a weak inequality then the limit (or as in this case the sup or inf) of the set satisfies the inequality.
 
Thanks for a most helpful reply, Opalg ...

I think you are correct ...but then I am not used to thinking of sup and inf in terms of limits ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K