Travel time of a particle suspended from an elastic string

Click For Summary
The discussion revolves around calculating the travel time of a particle suspended from an elastic string, with initial conditions including a velocity of projection and string extension. The user initially miscalculated the time of flight but identified an error in their approach regarding the signs in the equations of motion. After correcting the mistake, they confirmed the expected answer for the time taken to rise to the unstretched level. The conversation also touches on whether the motion can be classified as Simple Harmonic Motion given the initial velocity. Ultimately, the user successfully resolves their calculations, demonstrating a collaborative problem-solving process.
gnits
Messages
137
Reaction score
46
Homework Statement
To find the time of travel of a particle on an elastic string
Relevant Equations
F=ma
Hi,

Can anyone please help me with the following:

Q3.png


I have found the velocity of projection, no problem, it is v = 2*sqrt(10)

Also, in obtaining this value, I have also found the extension in the string when in equilibrium, it is x = 2

Now on to the time of flight.

The given answer is: t = ( PI/(2 * sqrt(40) ) + sqrt(2)/sqrt(10)

So the motion is in two parts, one when the string is stretched and so pulling on the mass, and one where the string is unstretched and so the mass is simply a projectile.

I am going to try to calculate the time taken to rise from 1m below A to A. This is the part of the motion which is that of a projectile. And I believe form the given answer that I zshould expect to obtain sqrt(2)/sqrt(10). I do not.

Hopefully, someone can show me where this method is in error:

Here's a diagram:

Diag.png


On the left is just the string, on the right is the string stretched by the 2g weight.

Let the general position of the particle be y below the unstretched level. The tension in the string is T. Hookes law gives T = Kx/a where K is the modulus of elasticity (here = 10), a is the natural length (here = 1), and the extention is x (in the diagram this is equal to y).

So we have T = 10y

Now equating forces gives (F = ma):

10y - 2g = 2 * acceleration

And so we have: acceleration = 5y - g = 5y - 10

Now, as accerleration = dv/dt = (ds/dt)(dv/ds)=v (dv/ds) we have:

v dv/dy = 5y - 10 and so separating variables gives:

integral(v dv) = integral(5y-10 dy) and so we have:

(1/2)v^2 = (5/2)y^2 - 10y + c

And using v = 2*sqrt(10) when y = 2 leads to c = 30

and so we have (1/2)v^2 = (5/2)y^2 - 10y + 30 which is

v^2 = 5y^2 - 20y + 60

So we can now put in y = 0 to obtain the speed of the mass at the moment that the string becomes slack. From here I use v = u - gt to obtain t - the time to go from slack to A. This leads to a different answer from the book.

Thanks for any help in pointing out my error,
Mitch.
 
  • Like
Likes sysprog
Physics news on Phys.org
gnits said:
the velocity of projection, no problem, it is v = 2*sqrt(10)
Not so. The string helps it up.

Edit2: having realized the 2g is a typo for 2kg, I withdraw the above.

Edit: also, I would take the 1m as the relaxed length. If you provide the book answer we can determine which reading is correct.
 
Last edited:
  • Like
Likes sysprog
gnits said:
Now, as accerleration = dv/dt = (ds/dt)(dv/ds)=v (dv/ds) we have:

v dv/dy = 5y - 10

Be careful with signs here. In setting up F = ma you chose the upward direction as positive. But y increases as you move downward.

You may write dv/dt = (dv/dy)(dy/dt), as this is just the chain rule. But does dy/dt = v or does dy/dt = -v?
 
  • Like
Likes sysprog
TSny said:
Be careful with signs here. In setting up F = ma you chose the upward direction as positive. But y increases as you move downward.

You may write dv/dt = (dv/dy)(dy/dt), as this is just the chain rule. But does dy/dt = v or does dy/dt = -v?

Thank you very much, that was it, the writing of dy/dt as v was the mistake. I should have written it, as you say, as -v. Then I obtain the book answer of sqrt(2)/sqrt(10). Thanks so much for spotting this. I will be more careful in future.

My remaining task is to find the time taken to go from the initial point of projection to the point 1m below A. The form of the answer PI/(2 * sqrt(20)) makes me think that this part of the motion should be treated as Simple Harmonic Motion. Is this in fact the case? If the particle had simply been released then I can see that it would be, but is it still Simple Harmonic Motion if the particle is initially projected with some velocity?

(If I were to try to use my equation of "v as a function of y" to solve for "v as a function of t" I would get: dy/dt=sqrt(20y-5y^2+20) and this leads to (20y - 5^2+10)^(-1/2) dy = dt and integrating the LHS isn't pretty and given that the context of the question is a chapter on SHM I'm thinking that there must be a smarter way)

Thanks for any help.
 
  • Like
Likes sysprog
gnits said:
Thank you very much, that was it, the writing of dy/dt as v was the mistake. I should have written it, as you say, as -v. Then I obtain the book answer of sqrt(2)/sqrt(10). Thanks so much for spotting this. I will be more careful in future.

My remaining task is to find the time taken to go from the initial point of projection to the point 1m below A. The form of the answer PI/(2 * sqrt(20)) makes me think that this part of the motion should be treated as Simple Harmonic Motion. Is this in fact the case? If the particle had simply been released then I can see that it would be, but is it still Simple Harmonic Motion if the particle is initially projected with some velocity?

(If I were to try to use my equation of "v as a function of y" to solve for "v as a function of t" I would get: dy/dt=sqrt(20y-5y^2+20) and this leads to (20y - 5^2+10)^(-1/2) dy = dt and integrating the LHS isn't pretty and given that the context of the question is a chapter on SHM I'm thinking that there must be a smarter way)

Thanks for any help.

Ok, I was not too far off, my mistake was thinking that the integral was unpleasant, in fact the integral is simply -(1/sqrt(5))*asin((2-x)/(2*sqrt(2))) and it all works out to the book answer.

Thanks again for all of your help,
Mitch.
 
  • Like
Likes TSny and sysprog
I love this. The youngster does and shows his work, is well assisted, and is appreciative. This is a big part of why PF is a great site.
 
The mass is given as 2g, the relaxed length as 1m and the modulus as 10N. In equilibrium the extension should be 2mm, not 2m.
I presume the 2g was a typo for 2kg.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
13
Views
1K
Replies
2
Views
1K
Replies
40
Views
2K
Replies
11
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
17
Views
2K
Replies
6
Views
1K