MHB Triangle Challenge: Evaluate $\cos \angle B$

Click For Summary
In triangle ABC, the equation 17a² + b² + 9c² = 2ab + 24ac is provided to evaluate cos(∠B). By rearranging the equation and applying the Law of Cosines, cos(∠B) can be expressed in terms of the triangle's sides. The calculations lead to a specific value for cos(∠B), which is derived from the relationships between the sides. The discussion emphasizes the importance of using algebraic manipulation and trigonometric identities to solve for the cosine of the angle. Ultimately, the evaluation of cos(∠B) is successfully completed through these mathematical methods.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a triangle $ABC$ with side lengths $a,\,b$ and $c$, it's given that $17a^2+b^2+9c^2=2ab+24ac$.

Evaluate $\cos \angle B$.
 
Mathematics news on Phys.org
anemone said:
In a triangle $ABC$ with side lengths $a,\,b$ and $c$, it's given that $17a^2+b^2+9c^2=2ab+24ac$.

Evaluate $\cos \angle B$.

we have $a^2 - 2ab + b^2 + 16a^2- 24ac + 9c^2 = (a-b)^2 + (4a-3c)^2 = 0$
hence $ a = b $ and $4a= 3c=>\frac{c}{a} = \frac{4}{3}$
hence $\cos \angle B = \frac{a^2+c^2-b^2}{2ac} = \frac{c^2}{2ac} = \frac{c}{2a} =\frac{2}{3} $
 
kaliprasad said:
we have $a^2 - 2ab + b^2 + 16a^2- 24ac + 9c^2 = (a-b)^2 + (4a-3c)^2 = 0$
hence $ a = b $ and $4a= 3c=>\frac{c}{a} = \frac{4}{3}$
hence $\cos \angle B = \frac{a^2+c^2-b^2}{2ac} = \frac{c^2}{2ac} = \frac{c}{2a} =\frac{2}{3} $

Well done, kaliprasad and thanks for participating!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K