Triangle Challenge: Proving Inequality of Sides

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Triangle
Click For Summary

Discussion Overview

The discussion centers around proving the inequality involving the sides of a triangle, specifically the expression $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$. The scope includes mathematical reasoning and exploration of different proof techniques.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Multiple participants present the same inequality for proof, indicating a shared interest in the problem.
  • One participant suggests that the AM-GM inequality could be a direct method to prove the inequality, implying a potential approach without providing a full solution.
  • A participant mentions they have a different solution approach that they plan to share later, indicating the possibility of multiple methods being explored.

Areas of Agreement / Disagreement

Participants generally agree on the inequality to be proven, but there are multiple competing views regarding the methods of proof, and the discussion remains unresolved as no consensus on a single solution has been reached.

Contextual Notes

Participants have not yet provided complete solutions, and there may be missing assumptions or steps in the proofs that have not been discussed.

Who May Find This Useful

Readers interested in mathematical inequalities, triangle properties, or proof techniques may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

Let $A=\dfrac{a}{b+c-a},B=\dfrac{b}{a+c-b},C=\dfrac{c}{a+b-c}$.

By the relationship between the arithmetic mean and the harmonic mean we have
$$\dfrac{A+B+C}{3}\ge\dfrac{3}{\dfrac1A+\dfrac1B+\dfrac1C}\Rightarrow A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}$$

The rational expression on the RHS is at a maximum when the denominator is at a minimum.
$$\dfrac{b+c-a}{a}+\dfrac{a+c-b}{b}+\dfrac{a+b-c}{c}$$
$$=\dfrac{b+c}{a}-1+\dfrac{a+c}{b}-1+\dfrac{a+b}{c}-1$$
$$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3\quad(1)$$
$$(x-y)^2\ge0$$
$$x^2+y^2\ge2xy$$
$$\dfrac xy+\dfrac yx\ge2$$
hence the minimum of $(1)$ is $3$, so we have
$$A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}\implies A+B+C\ge3$$

$\text{Q.E.D.}$
 
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

if we put $x = b+c-a, y = a+c-b, z = a + b -c$ we get
Given expression
$= \dfrac{1}{2}(\dfrac{y+z}{x} +\dfrac{z+x}{y} + \dfrac{x+y}{z})$
$= \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$
$= \dfrac{1}{2}(((\sqrt{\frac{y}{x}}- \sqrt{\frac{x}{y}})^2+ 2) +((\sqrt{\frac{y}{z}}- \sqrt{\frac{z}{y}})^2+ 2) + ((\sqrt{\frac{z}{x}}- \sqrt{\frac{x}{z}})^2+ 2)))$
$\ge \dfrac{1}{2}(2+2+2)\,or\,3$
 
Thanks both for participating! I actually solved it differently and I will post my solution when I have the time...

By the way, I see that direct use of the AM-GM inequality could bring us to the proof right away in both of the solutions above...:D

Since $a,\,b,\,c>0$ then we have

$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3$

$$\ge 6\sqrt[6]{\dfrac ba\cdot \dfrac ab \cdot \dfrac ca \cdot \dfrac ac \cdot \dfrac cb \cdot \dfrac bc}-3$$

$\ge 6-3=3$

From the substitutions that define $x = b+c-a, y = a+c-b, z = a + b -c$ and since $a,\,b$ and $c$ are sides of triangle, we have $x,\,y,\,z\ge 0$ so that

$ \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$

$\ge \dfrac{1}{2}\left(6\sqrt[6]{\dfrac{y}{x}\cdot \dfrac{x}{y} \cdot \dfrac{z}{y} \cdot \dfrac{y}{z} \cdot \dfrac{z}{x} \cdot \dfrac{x}{z}}\right)$

$\ge 3$
 
My solution:

$$\begin{align*}\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}&=\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}\\&\ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)\\&\ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2\\&\ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality}\\&\ge 3\end{align*}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K