MHB Triangle Challenge: Proving Inequality of Sides

Click For Summary
The discussion centers on proving the inequality $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$ for the sides of a triangle, denoted as a, b, and c. Participants suggest that applying the AM-GM inequality could provide a straightforward proof. One user mentions they have a different solution and plans to share it later. The conversation emphasizes the mathematical approach to proving the inequality, highlighting the relevance of established inequalities in triangle geometry. The thread showcases collaborative problem-solving in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

Let $A=\dfrac{a}{b+c-a},B=\dfrac{b}{a+c-b},C=\dfrac{c}{a+b-c}$.

By the relationship between the arithmetic mean and the harmonic mean we have
$$\dfrac{A+B+C}{3}\ge\dfrac{3}{\dfrac1A+\dfrac1B+\dfrac1C}\Rightarrow A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}$$

The rational expression on the RHS is at a maximum when the denominator is at a minimum.
$$\dfrac{b+c-a}{a}+\dfrac{a+c-b}{b}+\dfrac{a+b-c}{c}$$
$$=\dfrac{b+c}{a}-1+\dfrac{a+c}{b}-1+\dfrac{a+b}{c}-1$$
$$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3\quad(1)$$
$$(x-y)^2\ge0$$
$$x^2+y^2\ge2xy$$
$$\dfrac xy+\dfrac yx\ge2$$
hence the minimum of $(1)$ is $3$, so we have
$$A+B+C\ge\dfrac{9}{\dfrac1A+\dfrac1B+\dfrac1C}\implies A+B+C\ge3$$

$\text{Q.E.D.}$
 
anemone said:
Let $a\,b$ and $c$ be the sides of a triangle.

Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3$$.

if we put $x = b+c-a, y = a+c-b, z = a + b -c$ we get
Given expression
$= \dfrac{1}{2}(\dfrac{y+z}{x} +\dfrac{z+x}{y} + \dfrac{x+y}{z})$
$= \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$
$= \dfrac{1}{2}(((\sqrt{\frac{y}{x}}- \sqrt{\frac{x}{y}})^2+ 2) +((\sqrt{\frac{y}{z}}- \sqrt{\frac{z}{y}})^2+ 2) + ((\sqrt{\frac{z}{x}}- \sqrt{\frac{x}{z}})^2+ 2)))$
$\ge \dfrac{1}{2}(2+2+2)\,or\,3$
 
Thanks both for participating! I actually solved it differently and I will post my solution when I have the time...

By the way, I see that direct use of the AM-GM inequality could bring us to the proof right away in both of the solutions above...:D

Since $a,\,b,\,c>0$ then we have

$=\dfrac ba+\dfrac ab+\dfrac ca+\dfrac ac+\dfrac cb+\dfrac bc-3$

$$\ge 6\sqrt[6]{\dfrac ba\cdot \dfrac ab \cdot \dfrac ca \cdot \dfrac ac \cdot \dfrac cb \cdot \dfrac bc}-3$$

$\ge 6-3=3$

From the substitutions that define $x = b+c-a, y = a+c-b, z = a + b -c$ and since $a,\,b$ and $c$ are sides of triangle, we have $x,\,y,\,z\ge 0$ so that

$ \dfrac{1}{2}((\dfrac{y}{x}+ \dfrac{x}{y})+( \dfrac{z}{y} + \dfrac{y}{z}) + ( \dfrac{z}{x} + \dfrac{x}{z}))$

$\ge \dfrac{1}{2}\left(6\sqrt[6]{\dfrac{y}{x}\cdot \dfrac{x}{y} \cdot \dfrac{z}{y} \cdot \dfrac{y}{z} \cdot \dfrac{z}{x} \cdot \dfrac{x}{z}}\right)$

$\ge 3$
 
My solution:

$$\begin{align*}\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}&=\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}\\&\ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)\\&\ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2\\&\ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality}\\&\ge 3\end{align*}$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K