- #1

mnb96

- 715

- 5

Hello,

given a set [tex]\Omega[/tex], we consider all its subsets [itex]A_1,A_2,A_3,\ldots[/itex] with same cardinality

Do you have some hint in order to prove the following:

[tex]\forall A_x,A_y,A_z\subseteq \Omega[/tex] such that [tex]|A_x|=|A_y|=|A_z|=k[/tex]

[tex]|A_x-A_z| \leq |A_x-A_y|+ |A_y-A_z|[/tex]

Thanks

given a set [tex]\Omega[/tex], we consider all its subsets [itex]A_1,A_2,A_3,\ldots[/itex] with same cardinality

*k*.Do you have some hint in order to prove the following:

[tex]\forall A_x,A_y,A_z\subseteq \Omega[/tex] such that [tex]|A_x|=|A_y|=|A_z|=k[/tex]

[tex]|A_x-A_z| \leq |A_x-A_y|+ |A_y-A_z|[/tex]

Thanks

Last edited: