- #1
mnb96
- 715
- 5
Hello,
given a set [tex]\Omega[/tex], we consider all its subsets [itex]A_1,A_2,A_3,\ldots[/itex] with same cardinality k.
Do you have some hint in order to prove the following:
[tex]\forall A_x,A_y,A_z\subseteq \Omega[/tex] such that [tex]|A_x|=|A_y|=|A_z|=k[/tex]
[tex]|A_x-A_z| \leq |A_x-A_y|+ |A_y-A_z|[/tex]
Thanks
given a set [tex]\Omega[/tex], we consider all its subsets [itex]A_1,A_2,A_3,\ldots[/itex] with same cardinality k.
Do you have some hint in order to prove the following:
[tex]\forall A_x,A_y,A_z\subseteq \Omega[/tex] such that [tex]|A_x|=|A_y|=|A_z|=k[/tex]
[tex]|A_x-A_z| \leq |A_x-A_y|+ |A_y-A_z|[/tex]
Thanks
Last edited: