I'm not really sure if this is true, which is why I want your opinion. I have been trying to prove it, but it will help me a lot if someone can confirm this.(adsbygoogle = window.adsbygoogle || []).push({});

Let ## v_{1}, v_{2} ... v_{n} ## be vectors in a complex inner product space ##V##. Suppose that ## | v_{1} + v_{2} +...+ v_{n}| = |v_{1}| + |v_{2}| +...+ |v_{n}| ##. Then is it necessarily the case that ##v_{1},v_{2}...v_{n}## are all non-negative scalar multiples of some nonzero vector ##v## ?

It seems much easier to prove for a real inner product space, but I'm not even sure if this is true for complex inner product spaces. I'm trying an induction, first using the simple case where ## n = 2 ## but I can't seem to prove that the scaling factor must be a non-negative real number.

BiP

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Triangle inequality implies nonnegative scalar multiple

**Physics Forums | Science Articles, Homework Help, Discussion**