Tricky equation a^2 = k(k-u)(k-v)(k-w) where 2k = u+v+w

  • Context: MHB 
  • Thread starter Thread starter Wilmer
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the equation a² = k(k-u)(k-v)(k-w) with the condition 2k = u + v + w. Participants explore how to derive the value of w given the values of a, u, and v, and discuss the implications of their findings in the context of Heron's formula for the area of a triangle.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation

Main Points Raised

  • One participant presents the equation and seeks to solve for w given a, u, and v.
  • Another participant derives a quadratic equation in terms of w² and suggests using the quadratic formula for solutions.
  • A participant claims to have found a specific expression for w and relates it to Heron's formula for the area of a triangle.
  • Concerns are raised about the validity of the derived solutions for specific values of u and v, particularly when u=4 and v=15.
  • Another participant checks the arithmetic and provides a factorization of the resulting polynomial, indicating multiple potential solutions for w.

Areas of Agreement / Disagreement

Participants express varying degrees of confidence in their calculations and interpretations. There is no consensus on the correctness of the derived solutions for all cases, particularly regarding the specific values of u and v.

Contextual Notes

The discussion includes potential limitations related to the assumptions made in the derivation process and the dependence on specific values of u and v. The correctness of the arithmetic and the implications of the quadratic solutions remain unresolved.

Wilmer
Messages
303
Reaction score
0
a^2 = k(k-u)(k-v)(k-w) where 2k = u+v+w

Given a, u and v, w = ?
 
Mathematics news on Phys.org
Wilmer said:
a^2 = k(k-u)(k-v)(k-w) where 2k = u+v+w

Given a, u and v, w = ?

$$k = \dfrac{u+v+w}{2}$$, $$k-u = \dfrac{-u+v+w}{2}$$, $$k-v = \dfrac{u-v+w}{2}$$, $$k-w = \dfrac{u+v-w}{2}$$.

Substituting in we get

$$a^2=\dfrac{1}{16}(u+v+w)(u+v-w)(w+(u-v))(w-(u-v))$$

Simplifying yields

$$16a^2=((u+v)^2-w^2)(w^2-(u-v)^2)$$

$$-16a^2=(w^2-(u+v)^2)(w^2-(u-v)^2)$$

$$w^4-2(u^2+v^2)w^2+(u^2-v^2)^2+16a^2=0$$

This is a quadratic equation in $$w^2$$. Substitute in the values for $$a,u,v$$ and use the quadratic formula.
 
I was able to get to:
w = SQRT[u^2 + v^2 + 2SQRT((uv)^2 - 4a^2)]

As you probably surmised, this is Heron's triangle area in disguise!

Example: triangle sides u,v,w: u=4, v=13, w=15 : a = area = 24
My solution will give correctly w = 15 using u=4:v=13 or u=13:v=4
But not if u=4, v=15: does not yield 13

Can you tell me why...thanks in advance...
 
Wilmer said:
I was able to get to:
w = SQRT[u^2 + v^2 + 2SQRT((uv)^2 - 4a^2)]

As you probably surmised, this is Heron's triangle area in disguise!

Example: triangle sides u,v,w: u=4, v=13, w=15 : a = area = 24
My solution will give correctly w = 15 using u=4:v=13 or u=13:v=4
But not if u=4, v=15: does not yield 13

Can you tell me why...thanks in advance...

Double check your arithmetic.
With $$u=4$$, $$v=15$$ and $$a=24$$, you should get the equation

$$w^4-482w^2+52897=0$$ which factors into

$$(w-13)(w+13)(w^2-313)=0$$

This appears to yield two possible answers $$w=13$$ and $$w=\sqrt{313}$$.
 
Gotcha! Thanks again...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K