Trigonometric equality sin15°sin24°sin57°=sin39°sin27°sin18°

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
SUMMARY

The equality $\sin 15^\circ \sin 24^\circ \sin 57^\circ = \sin 39^\circ \sin 27^\circ \sin 18^\circ$ is proven using sum-and-product trigonometric identities. The expressions for both sides are simplified to show that they contain the common term $\sin 48^\circ$. Further analysis reveals that $\sin 66^\circ - \sin 18^\circ - \sin 6^\circ = \sin 30^\circ = \frac{1}{2}$. The proof is completed by demonstrating that $\sin 54^\circ - \sin 18^\circ = \frac{1}{2}$ through geometric properties of a regular pentagon.

PREREQUISITES
  • Understanding of trigonometric identities, specifically sum-and-product formulas.
  • Familiarity with the sine function and its properties.
  • Basic knowledge of geometric concepts related to regular polygons.
  • Ability to manipulate and simplify trigonometric expressions.
NEXT STEPS
  • Study the derivation and applications of sum-and-product trigonometric identities.
  • Explore the properties of the sine function, particularly symmetry and periodicity.
  • Investigate the geometric relationships in regular polygons, especially pentagons.
  • Learn advanced techniques for proving trigonometric equalities and identities.
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching geometry, and anyone interested in solving trigonometric identities and exploring geometric proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sin 15^\circ \sin 24^\circ \sin 57^\circ= \sin 39^\circ \sin 27^\circ \sin 18^\circ$.
This is an unsolved problem I found @ AOPS.
 
Mathematics news on Phys.org
anemone said:
Prove $\sin 15^\circ \sin 24^\circ \sin 57^\circ= \sin 39^\circ \sin 27^\circ \sin 18^\circ$.
[sp]Using the sum-and-product trig formulas, $$\begin{aligned}\sin 15^\circ \sin 24^\circ \sin 57^\circ &= \sin 15^\circ\cdot\tfrac12\bigl( \cos 33^\circ - \cos 81^\circ\bigr) \\ &= \tfrac14\bigl( \sin 48^\circ - \sin 18^\circ - \sin 96^\circ + \sin 66^\circ\bigr),\qquad(1) \\ \\ \sin 39^\circ \sin 27^\circ \sin 18^\circ &= \sin 39^\circ\cdot\tfrac12\bigl( \cos 9^\circ - \cos 45^\circ\bigr) \\ &= \tfrac14\bigl( \sin 48^\circ + \sin 30^\circ - \sin 84^\circ + \sin 6^\circ\bigr). \qquad(2)\end{aligned}$$

Comparing (1) and (2), they both contain $\sin 48^\circ$. Also, $\sin 96^\circ = \sin 84^\circ$ (because the sine function is symmetric on either side of $90^\circ$). So to show that (1) and (2) are equal, we need to prove that $\sin 66^\circ - \sin 18^\circ - \sin 6^\circ = \sin 30^\circ = \frac12.$ But $$\sin 66^\circ - \sin 6^\circ = 2\cos 36^\circ \sin 30^\circ = \cos 36^\circ = \sin 54^\circ.$$

Therefore it remains to show that $\sin 54^\circ - \sin 18^\circ = \frac12.$ The nicest way to do that is to use the geometry of the pentagon.
[TIKZ]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=below: $Q$] (Q) at (4.755,-4.045) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) ;
\draw (A) -- (P) -- (B) -- (D) -- (Q) -- (E) ;
\draw (C) -- (0,1.545) ;
\draw (-3.4,-3.75) node {$72^\circ$} ;
\draw (3.45,-3.75) node {$72^\circ$} ;
\draw (-5.1,0.8) node {$18^\circ\to$} ;
\draw (5.1,0.8) node {$\leftarrow18^\circ$} ;
\draw (-0.35,4.3) node {$54^\circ$} ;
\draw (0.4,4.3) node {$54^\circ$} ;
[/TIKZ]
In the diagram, $ABCDE$ is a regular pentagon with sides of length $1$, and $PBDQ$ is a rectangle. It is clear from the given angles that $BD = 2\sin 54^\circ$ and that $PQ = 1 + 2\sin 18^\circ$. Therefore $2\sin 54^\circ = 1 + 2\sin 18^\circ$, from which $\sin 54^\circ - \sin 18^\circ = \frac12.$[/sp]​
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K