MHB Trigonometric equality sin15°sin24°sin57°=sin39°sin27°sin18°

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
The equation $\sin 15^\circ \sin 24^\circ \sin 57^\circ = \sin 39^\circ \sin 27^\circ \sin 18^\circ$ is proven by manipulating both sides using sum-and-product trigonometric formulas. Both expressions simplify to include $\sin 48^\circ$, and the equality hinges on proving that $\sin 66^\circ - \sin 18^\circ - \sin 6^\circ = \frac{1}{2}$. This is further simplified to show that $\sin 54^\circ - \sin 18^\circ = \frac{1}{2}$, which is demonstrated using the geometry of a regular pentagon. The proof concludes successfully, establishing the trigonometric equality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sin 15^\circ \sin 24^\circ \sin 57^\circ= \sin 39^\circ \sin 27^\circ \sin 18^\circ$.
This is an unsolved problem I found @ AOPS.
 
Mathematics news on Phys.org
anemone said:
Prove $\sin 15^\circ \sin 24^\circ \sin 57^\circ= \sin 39^\circ \sin 27^\circ \sin 18^\circ$.
[sp]Using the sum-and-product trig formulas, $$\begin{aligned}\sin 15^\circ \sin 24^\circ \sin 57^\circ &= \sin 15^\circ\cdot\tfrac12\bigl( \cos 33^\circ - \cos 81^\circ\bigr) \\ &= \tfrac14\bigl( \sin 48^\circ - \sin 18^\circ - \sin 96^\circ + \sin 66^\circ\bigr),\qquad(1) \\ \\ \sin 39^\circ \sin 27^\circ \sin 18^\circ &= \sin 39^\circ\cdot\tfrac12\bigl( \cos 9^\circ - \cos 45^\circ\bigr) \\ &= \tfrac14\bigl( \sin 48^\circ + \sin 30^\circ - \sin 84^\circ + \sin 6^\circ\bigr). \qquad(2)\end{aligned}$$

Comparing (1) and (2), they both contain $\sin 48^\circ$. Also, $\sin 96^\circ = \sin 84^\circ$ (because the sine function is symmetric on either side of $90^\circ$). So to show that (1) and (2) are equal, we need to prove that $\sin 66^\circ - \sin 18^\circ - \sin 6^\circ = \sin 30^\circ = \frac12.$ But $$\sin 66^\circ - \sin 6^\circ = 2\cos 36^\circ \sin 30^\circ = \cos 36^\circ = \sin 54^\circ.$$

Therefore it remains to show that $\sin 54^\circ - \sin 18^\circ = \frac12.$ The nicest way to do that is to use the geometry of the pentagon.
[TIKZ]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=below: $Q$] (Q) at (4.755,-4.045) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) ;
\draw (A) -- (P) -- (B) -- (D) -- (Q) -- (E) ;
\draw (C) -- (0,1.545) ;
\draw (-3.4,-3.75) node {$72^\circ$} ;
\draw (3.45,-3.75) node {$72^\circ$} ;
\draw (-5.1,0.8) node {$18^\circ\to$} ;
\draw (5.1,0.8) node {$\leftarrow18^\circ$} ;
\draw (-0.35,4.3) node {$54^\circ$} ;
\draw (0.4,4.3) node {$54^\circ$} ;
[/TIKZ]
In the diagram, $ABCDE$ is a regular pentagon with sides of length $1$, and $PBDQ$ is a rectangle. It is clear from the given angles that $BD = 2\sin 54^\circ$ and that $PQ = 1 + 2\sin 18^\circ$. Therefore $2\sin 54^\circ = 1 + 2\sin 18^\circ$, from which $\sin 54^\circ - \sin 18^\circ = \frac12.$[/sp]​
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K