MHB Trigonometric Identity Correction: Solving a Complex Equation

Click For Summary
The discussion centers on a trigonometric identity involving the equation $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$. A misprint is identified in the original identity, which should correctly state $d^3(4c^2-a^2)=c^4(3d-b)$. Participants express gratitude to Opalg for pointing out the error. The correct formulation is essential for solving the complex equation accurately. Clarifying this identity is vital for further mathematical discussions and solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$, show that $2d^3(2c^3-a^2)=c^4(3d-b)$.
 
Mathematics news on Phys.org
anemone said:
If $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$, show that $2d^3(2c^3-a^2)=c^4(3d-b)$.

I'm sorry, folks!(Tmi)(Worried) But there's a misprint in the identity because it should read as $d^3(4c^2-a^2)=c^4(3d-b)$.:o

I must thank Opalg for letting me know something doesn't look right with the initial identity!(Sun)
 
anemone said:
I'm sorry, folks!(Tmi)(Worried) But there's a misprint in the identity because it should read as $d^3(4c^2-a^2)=c^4(3d-b)$.:o

Let
$$\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}=\lambda$$

$$\sin 3x=3\sin x-4\sin^3 x \Rightarrow b\lambda =3d\lambda-4d^3\lambda^3 \Rightarrow \lambda^2=\frac{3d-b}{4d^3}$$

Also,
$$\sin 4x=2\sin 2x \cos 2x \Rightarrow 2c\lambda \sqrt{1-c^2\lambda^2}=a\lambda \Rightarrow \lambda^2=\frac{4c^2-a^2}{4c^4}$$

Equating the two expression for $\lambda^2$,
$$\frac{3d-b}{4d^3}=\frac{4c^2-a^2}{4c^4}$$
$$\Rightarrow d^3(4c^2-a^2)=c^4(3d-b)$$

$\blacksquare$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K