MHB Trigonometric Identity Correction: Solving a Complex Equation

Click For Summary
The discussion centers on a trigonometric identity involving the equation $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$. A misprint is identified in the original identity, which should correctly state $d^3(4c^2-a^2)=c^4(3d-b)$. Participants express gratitude to Opalg for pointing out the error. The correct formulation is essential for solving the complex equation accurately. Clarifying this identity is vital for further mathematical discussions and solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$, show that $2d^3(2c^3-a^2)=c^4(3d-b)$.
 
Mathematics news on Phys.org
anemone said:
If $\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}$, show that $2d^3(2c^3-a^2)=c^4(3d-b)$.

I'm sorry, folks!(Tmi)(Worried) But there's a misprint in the identity because it should read as $d^3(4c^2-a^2)=c^4(3d-b)$.:o

I must thank Opalg for letting me know something doesn't look right with the initial identity!(Sun)
 
anemone said:
I'm sorry, folks!(Tmi)(Worried) But there's a misprint in the identity because it should read as $d^3(4c^2-a^2)=c^4(3d-b)$.:o

Let
$$\dfrac{\sin 4x}{a}=\dfrac{\sin 3x}{b}=\dfrac{\sin 2x}{c}=\dfrac{\sin x}{d}=\lambda$$

$$\sin 3x=3\sin x-4\sin^3 x \Rightarrow b\lambda =3d\lambda-4d^3\lambda^3 \Rightarrow \lambda^2=\frac{3d-b}{4d^3}$$

Also,
$$\sin 4x=2\sin 2x \cos 2x \Rightarrow 2c\lambda \sqrt{1-c^2\lambda^2}=a\lambda \Rightarrow \lambda^2=\frac{4c^2-a^2}{4c^4}$$

Equating the two expression for $\lambda^2$,
$$\frac{3d-b}{4d^3}=\frac{4c^2-a^2}{4c^4}$$
$$\Rightarrow d^3(4c^2-a^2)=c^4(3d-b)$$

$\blacksquare$
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
988
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K