MHB Trigonometric inequality bounded by lines

Click For Summary
The discussion centers on proving the inequality $$16x\cos(8x)+4x\sin(8x)-2\sin(8x)<|17x|$$ in the context of damped motion in spring-mass systems. The approach involves expressing the left-hand side as a vector dot product and applying the Cauchy-Schwarz inequality. The key question raised is how to validate the inequality $$\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}$$ without knowing the range of x. It is noted that the inequality holds true for specific intervals of x, specifically $$\left(-\infty,\frac{2\left(-4-\sqrt{33} \right)}{17} \right)\,\cup\,\left(\frac{2\left(-4+\sqrt{33} \right)}{17},\infty \right)$$. The discussion emphasizes the need for further exploration of the inequality's validity across different ranges of x.
kalish1
Messages
79
Reaction score
0
How can it be shown that $$16x\cos(8x)+4x\sin(8x)-2\sin(8x)<|17x|?$$

This problem arises from work with damped motion in spring-mass systems in Differential Equations. I have gotten to this inequality after some algebraic manipulation, but am completely stuck here.

Here is the illustrative graph provided by Wolfram Alpha:

[1]: http://i.stack.imgur.com/oWf9E.png

Thanks!
 
Mathematics news on Phys.org
I would use a linear-combination identity to obtain the amplitude $A$ of the trigonometric expression:

$$A=\sqrt{(16x)^2+(4x-2)^2}<\sqrt{(17x)^2}$$

What do you find?
 
The LHS can be expressed as a vector dot product:

\[16xcos(8x)+4xsin(8x)-2sin(8x)=16xcos(8x)+(4x-2)sin(8x)=\\\\ \binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)}=\vec{a}\cdot \vec{e}\\\\ Applying\; the \; Cauchy-Schwarz \; inequality:\\\\ \left |\binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)} \right |\leq \left \| \binom{16x}{4x-2} \right \|=\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\]

My question: How do you show the validity of the last inequality, if we don´t know the range of x:

\[\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\;?\]
 
We can show that this inequality is true on:

$$\left(-\infty,\frac{2\left(-4-\sqrt{33} \right)}{17} \right)\,\cup\,\left(\frac{2\left(-4+\sqrt{33} \right)}{17},\infty \right)$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 12 ·
Replies
12
Views
11K
  • · Replies 10 ·
Replies
10
Views
5K