MHB Trigonometric inequality bounded by lines

kalish1
Messages
79
Reaction score
0
How can it be shown that $$16x\cos(8x)+4x\sin(8x)-2\sin(8x)<|17x|?$$

This problem arises from work with damped motion in spring-mass systems in Differential Equations. I have gotten to this inequality after some algebraic manipulation, but am completely stuck here.

Here is the illustrative graph provided by Wolfram Alpha:

[1]: http://i.stack.imgur.com/oWf9E.png

Thanks!
 
Mathematics news on Phys.org
I would use a linear-combination identity to obtain the amplitude $A$ of the trigonometric expression:

$$A=\sqrt{(16x)^2+(4x-2)^2}<\sqrt{(17x)^2}$$

What do you find?
 
The LHS can be expressed as a vector dot product:

\[16xcos(8x)+4xsin(8x)-2sin(8x)=16xcos(8x)+(4x-2)sin(8x)=\\\\ \binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)}=\vec{a}\cdot \vec{e}\\\\ Applying\; the \; Cauchy-Schwarz \; inequality:\\\\ \left |\binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)} \right |\leq \left \| \binom{16x}{4x-2} \right \|=\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\]

My question: How do you show the validity of the last inequality, if we don´t know the range of x:

\[\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\;?\]
 
We can show that this inequality is true on:

$$\left(-\infty,\frac{2\left(-4-\sqrt{33} \right)}{17} \right)\,\cup\,\left(\frac{2\left(-4+\sqrt{33} \right)}{17},\infty \right)$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
15
Views
3K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
13
Views
3K
Replies
10
Views
5K
Back
Top