MHB Trigonometric inequality bounded by lines

AI Thread Summary
The discussion centers on proving the inequality $$16x\cos(8x)+4x\sin(8x)-2\sin(8x)<|17x|$$ in the context of damped motion in spring-mass systems. The approach involves expressing the left-hand side as a vector dot product and applying the Cauchy-Schwarz inequality. The key question raised is how to validate the inequality $$\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}$$ without knowing the range of x. It is noted that the inequality holds true for specific intervals of x, specifically $$\left(-\infty,\frac{2\left(-4-\sqrt{33} \right)}{17} \right)\,\cup\,\left(\frac{2\left(-4+\sqrt{33} \right)}{17},\infty \right)$$. The discussion emphasizes the need for further exploration of the inequality's validity across different ranges of x.
kalish1
Messages
79
Reaction score
0
How can it be shown that $$16x\cos(8x)+4x\sin(8x)-2\sin(8x)<|17x|?$$

This problem arises from work with damped motion in spring-mass systems in Differential Equations. I have gotten to this inequality after some algebraic manipulation, but am completely stuck here.

Here is the illustrative graph provided by Wolfram Alpha:

[1]: http://i.stack.imgur.com/oWf9E.png

Thanks!
 
Mathematics news on Phys.org
I would use a linear-combination identity to obtain the amplitude $A$ of the trigonometric expression:

$$A=\sqrt{(16x)^2+(4x-2)^2}<\sqrt{(17x)^2}$$

What do you find?
 
The LHS can be expressed as a vector dot product:

\[16xcos(8x)+4xsin(8x)-2sin(8x)=16xcos(8x)+(4x-2)sin(8x)=\\\\ \binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)}=\vec{a}\cdot \vec{e}\\\\ Applying\; the \; Cauchy-Schwarz \; inequality:\\\\ \left |\binom{16x}{4x-2}\cdot \binom{cos(8x)}{sin(8x)} \right |\leq \left \| \binom{16x}{4x-2} \right \|=\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\]

My question: How do you show the validity of the last inequality, if we don´t know the range of x:

\[\sqrt{(16x)^{2}+(4x-2)^2}\leq \sqrt{(17x)^{2}}\;?\]
 
We can show that this inequality is true on:

$$\left(-\infty,\frac{2\left(-4-\sqrt{33} \right)}{17} \right)\,\cup\,\left(\frac{2\left(-4+\sqrt{33} \right)}{17},\infty \right)$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
15
Views
3K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
13
Views
3K
Replies
10
Views
5K
Back
Top