MHB Trigonometric Question sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x)

  • Thread starter Thread starter Yazan975
  • Start date Start date
  • Tags Tags
    Trigonometric
AI Thread Summary
The discussion revolves around simplifying the expression sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x). The user correctly identifies that sin^2(180-x) simplifies to sin^2(x) and cos^2(360-x) simplifies to cos^2(x). They note that the sine and cosine terms cancel with their respective cosecant and secant functions, leading to a simplified form. However, the user is confused as their result does not match the answer sheet, which states the answer is -sec(x). Further assistance is requested to complete the simplification correctly.
Yazan975
Messages
30
Reaction score
0
View attachment 9012

In this question, I tried this:

sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x), where cosec(x) = 1/sin(x) and sec(x) = 1/cos(x)

-sin^2(180-x) = sin^2(x) and cos^2(x) = cos^2(x)

-The sin^2 and the 1/sin(x) cancle out along with the cos^2 and the 1/cos(x)

Therefore, I am left with sin(x)(270+x) + cos(x)(180-x)

This looks wrong. The answer on the answer sheet is -sec(x). I ask you for help please.
 

Attachments

  • Screen Shot 2019-05-17 at 7.24.45 PM.png
    Screen Shot 2019-05-17 at 7.24.45 PM.png
    23.6 KB · Views: 131
Mathematics news on Phys.org
$\csc(270+x) = \dfrac{1}{\sin(270+x)} = \dfrac{1}{\sin(270)\cos{x}+\cos(270)\sin{x}} = \dfrac{1}{-\cos{x}}$

$\sec(180-x) = \dfrac{1}{\cos(180-x)} = \dfrac{1}{\cos(180)\cos{x} + \sin(180)\sin{x}} = \dfrac{1}{-\cos{x}}$

...

$\dfrac{\sin^2{x}}{-\cos{x}} + \dfrac{\cos^2{x}}{-\cos{x}}$

can you finish from here?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top