MHB Trigonometric Question sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x)

  • Thread starter Thread starter Yazan975
  • Start date Start date
  • Tags Tags
    Trigonometric
Click For Summary
The discussion revolves around simplifying the expression sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x). The user correctly identifies that sin^2(180-x) simplifies to sin^2(x) and cos^2(360-x) simplifies to cos^2(x). They note that the sine and cosine terms cancel with their respective cosecant and secant functions, leading to a simplified form. However, the user is confused as their result does not match the answer sheet, which states the answer is -sec(x). Further assistance is requested to complete the simplification correctly.
Yazan975
Messages
30
Reaction score
0
View attachment 9012

In this question, I tried this:

sin^2(180-x) cosec(270+x) + cos^2(360-x) sec(180-x), where cosec(x) = 1/sin(x) and sec(x) = 1/cos(x)

-sin^2(180-x) = sin^2(x) and cos^2(x) = cos^2(x)

-The sin^2 and the 1/sin(x) cancle out along with the cos^2 and the 1/cos(x)

Therefore, I am left with sin(x)(270+x) + cos(x)(180-x)

This looks wrong. The answer on the answer sheet is -sec(x). I ask you for help please.
 

Attachments

  • Screen Shot 2019-05-17 at 7.24.45 PM.png
    Screen Shot 2019-05-17 at 7.24.45 PM.png
    23.6 KB · Views: 138
Mathematics news on Phys.org
$\csc(270+x) = \dfrac{1}{\sin(270+x)} = \dfrac{1}{\sin(270)\cos{x}+\cos(270)\sin{x}} = \dfrac{1}{-\cos{x}}$

$\sec(180-x) = \dfrac{1}{\cos(180-x)} = \dfrac{1}{\cos(180)\cos{x} + \sin(180)\sin{x}} = \dfrac{1}{-\cos{x}}$

...

$\dfrac{\sin^2{x}}{-\cos{x}} + \dfrac{\cos^2{x}}{-\cos{x}}$

can you finish from here?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K