Trigonometry identity sin(pi)cos(wpi)+cos(pi)sin(wpi)

Click For Summary
SUMMARY

The trigonometric identity sin(π)cos(ωπ) - cos(π)sin(ωπ) simplifies to sin(ωπ) by substituting the known values sin(π) = 0 and cos(π) = -1. This identity is a direct application of the sine subtraction formula, confirming that the left-hand side equals the right-hand side. The discussion emphasizes the importance of recognizing fundamental trigonometric values in simplifying expressions.

PREREQUISITES
  • Understanding of basic trigonometric functions: sine and cosine
  • Familiarity with trigonometric identities, specifically the sine subtraction formula
  • Knowledge of the unit circle and key angle values
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Study the sine subtraction formula in detail
  • Explore other trigonometric identities such as the cosine addition formula
  • Practice simplifying trigonometric expressions using known values
  • Learn about the unit circle and its application in trigonometry
USEFUL FOR

Students studying trigonometry, educators teaching trigonometric identities, and anyone looking to strengthen their understanding of trigonometric functions and their applications.

izen
Messages
50
Reaction score
0

Homework Statement



Hi guys, How can sin(∏)cos(ω∏)-cos(∏)sin(ω∏) = sin(ω∏)? please guide me trigonometry identity to apply with this?

Homework Equations


The Attempt at a Solution

sin_x_pi.jpg
 
Physics news on Phys.org
sin(pi)=0, cos(pi)=(-1). So, of course, sin(∏)cos(ω∏)-cos(∏)sin(ω∏) = sin(ω∏). I'm not sure what that has to do with what follows.
 
Dick said:
sin(pi)=0, cos(pi)=(-1). So, of course, sin(∏)cos(ω∏)-cos(∏)sin(ω∏) = sin(ω∏). I'm not sure what that has to do with what follows.

Ohhh :shy: Just been thinking about using trig identity, thank you Dick !
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K