Triplets/Singlets and applying lowering S operator

  • Thread starter Thread starter gfd43tg
  • Start date Start date
  • Tags Tags
    Operator
Click For Summary
The discussion focuses on the confusion surrounding the representation of spin states, particularly the transition from the notation |s m⟩ to the up/down arrow representation. The triplet state is clarified as having three configurations due to the combinations of spins, while the singlet state |0 0⟩ is orthogonal to |1 0⟩. The lowering operator S_- is essential for deriving states like |10⟩ from |11⟩, as it lowers the m value while maintaining the total spin quantum number. The participants emphasize that constructing states from arrow notation to spin eigenstates is more straightforward than the reverse, given the multiple ways to form |s m⟩ states. Overall, the discussion highlights the importance of understanding operator properties and state construction in quantum mechanics.
gfd43tg
Gold Member
Messages
947
Reaction score
48
upload_2015-5-2_16-1-36.png

Hello, I am going through this and I am totally confused. Where do they come up with ##\mid 1 \hspace {0.02 in} 0 \rangle = \frac {1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow)##? They just use the lowering operator, but I'm wondering if the switch in order from equation 4.177 and the one right above it (not numbered) is significant?

Also, why is this thing called a "triplet" (I see three rows in equation 4.177, is that why?)

I guess my problem is to go from ## \mid s \hspace{0.02 in} m \rangle## to some sort of up down representation. How do I get the singlet, ##\mid 0 \hspace{0.02 in} 0 \rangle##?
 
Last edited:
Physics news on Phys.org
The notation |SM> refers to total spin numbers.
The arrow notation refers to individual m values, individual s=1/2) being understood.
The |00> state is the combination orthogonal to |10>.
 
Okay, is there some way to go from an arbitrary ##\mid s \hspace {0.02 in} m \rangle## to the up/down arrow combination? I read everything you wrote previously, but I still don't know how to go from the spin eigenstate to the up/down arrow
 
The way the author derives the ##|10>## state is he makes use of the property of lowering operator ##S_-##. Lowering (and raising) operators have the property that when it acts on an angular momentum eigenstate, it will lower (raise) the m value by one unit while retaining the angular momentum quantum number (in that notation s). So knowing that ##|11> = \uparrow \uparrow##, you can apply ##S_-## to that state to get ##|10>##. If you want to check if ##|10>## is really how it was written in that equation you can try to make ##S^2 = (S_1+S_2)^2## and ##S_z = S_{1z}+S_{2z}## act on the arrow up and down expression for ##|10>##, and see what expression they ended up respectively, although the algebra might get quite tedious.
 
Yes there is. If you have N spins of s=1/2, first write down the |N/2 N/2> state, that is all N arrows point up. Then apply the lowering operator to get the |N/2 N/2-1> state, etc. Now you have the |N/2 m> states. To get the |N/2-1 m> multiplets first construct the |N/2-1 N/2-1> states. These are the N-1 combinations orthogonal to |N/2 N/2-1>. Apply S- repeatedly to get the multiplets. And so on.
Check at the end if you have 2^N states.
 
Maylis said:
Okay, is there some way to go from an arbitrary ##\mid s \hspace {0.02 in} m \rangle## to the up/down arrow combination? I read everything you wrote previously, but I still don't know how to go from the spin eigenstate to the up/down arrow
It is the other way around. The reason that you cannot go from |Sm> to arrows is that there are many ways to create an |Sm> state. Instead, go from the arrow notation to the spin eigenstate. An alternative to the construction algorithm above is to take all states with n+ up and n- down arrows, construct the matrices of S^2 = Sz^2 + (S+S- + S-S+)/2. Diagonalize the matrix and you will have found the m = n+ - n- members of all multiplets.
 
Last edited:
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
911
  • · Replies 5 ·
Replies
5
Views
20K