I Trouble understanding contravariant transformations for vectors

whisperzone
Messages
1
Reaction score
0
TL;DR Summary
Don't understand equation of contravariant transformation for vectors
Hey, so I've been studying some math on my own and I'm really confused by this one bit. I understand what contravariant components of a vector are, but I don't understand the ways in which they transform under a change of coordinate system.

For instance, let's say we have two coordinate systems ##(x^1, x^2, ..., x^n)## and ##(\overline{x}^1, \overline{x}^2, ..., \overline{x}^n)## and a coordinate transformation relating the two systems: ##\overline{x}^j = \overline{x}^j (x^1, x^2, ..., x^n)##. Everything I've read says that

$$\overline{a}^j = \sum_{k = 1}^{n} \frac{\partial \overline{x}^j}{\partial x^k} a^k, \text{ where } j = 1, 2, ... n$$

but intuitively this makes no sense to me at all. For instance, consider a coordinate transformation ##(x^1, x^2, ..., x^n) \rightarrow (2x^1, 2x^2, ..., 2x^n)##. Then the partial derivative of ##\overline{x}^j## with respect to ##x^k## should be 2, right (or am I missing something here)? And if the partial derivative is 2, is that really a contravariant transformation, since whatever you're applying the transformation to would also get multiplied by 2?

Apologies if anything was too unclear, I've just been struggling with this for a while.
 
Mathematics news on Phys.org
Contravariant refers to transforming the opposite way of the tangent basis vectors, which are defined as
$$
\vec E_i = \frac{\partial \vec x}{\partial x^i}.
$$
This means that
$$
\vec E_i ' = \frac{\partial \vec x}{\partial x^j} \frac{\partial x^j}{\partial x'^i}.
$$
In the case of your transformation, you therefore have ##\vec E_i' = \vec E_i / 2## so there is a factor of 1/2 in the transformation of the basis vectors. The components therefore (which are multiplied by 2) transform in the opposite fashion, i.e., contravariantly.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top