I Trouble understanding coordinates for the Lagrangian

Click For Summary
The discussion revolves around understanding the derivation of infinitesimal displacement for particles in spherical coordinates as presented in Landau's mechanics book. The solution involves applying Pythagorean principles to orthogonal infinitesimal displacements, specifically in terms of the angles θ and φ. It clarifies that when φ is constant, the displacement is represented by Eθ, and when θ is constant, it is represented by Eφ, leading to the expression for total displacement squared. The conversation highlights the breakdown of motion into horizontal and vertical components, reinforcing the orthogonality of the displacements. Overall, the explanation aids in grasping the application of spherical coordinates in Lagrangian mechanics.
p1ndol
Messages
7
Reaction score
3
Hello, I'm having some trouble understanding this solution provided in Landau's book on mechanics. I'd like to understand how they arrived at the infinitesimal displacement for the particles m1. I appreciate any kind of help regarding this problem, thank you!
 

Attachments

  • Captura de Tela (65).png
    Captura de Tela (65).png
    16.8 KB · Views: 140
Physics news on Phys.org
It's nothing more than Pythagoras applied to orthogonal infinitesimal displacements ##ad\theta## and ##a\sin{\theta} d\phi##, however if you want a (very slightly) more formal approach in terms of the holonomic basis...

if ##\phi## is held constant then ##\mathbf{E}_{\theta} = \dfrac{\partial \mathbf{r}}{\partial \theta} = a \hat{\boldsymbol{e}}_{\theta}## whilst if ##\theta## is held constant then ##\mathbf{E}_{\phi} = \dfrac{\partial \mathbf{r}}{\partial \phi} = a\sin{\theta} \hat{\boldsymbol{e}}_{\phi}##. Since ##\mathbf{E}_{\theta}## and ##\mathbf{E}_{\phi}## are orthogonal you have $$dl^2 = \displaystyle{\sum_i \sum_j }dx^i \mathbf{E}_i \cdot dx^j \mathbf{E}_j= {E_{\theta}}^2 d\theta^2 + {E_{\phi}}^2 d\phi^2 = a^2 d\theta^2 + a^2 \sin^2{\theta} d\phi^2$$
 
Last edited:
  • Like
Likes vanhees71, Leo Liu and p1ndol
Thank you very much!
 
  • Like
Likes ergospherical
I think he did it in spherical coordinates. The infinitesimal motion of m1 can be disassembled into two parts; this disassembly is correct since the displacements in the two directions are small (meaning they are kinda linear) and orthogonal:

Displacement^2 caused by horizontal rotation ##\Omega##:
$$dl^2_{horizontal}=R^2(\Omega\mathrm{dt})^2=a^2\sin^2 \theta(\Omega\mathrm{dt})^2$$

Displacement^2 caused by the rotation of m1 about A in the plane of book:
$$v=r\omega\implies dl^2_{vertical}=(a\mathrm d{\theta})^2$$

Hope this helps.
 
Thanks, you couldn't have been clearer!
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K