The http://en.wikipedia.org/wiki/Gamma_function" [Broken] is the integral [tex]\Gamma(z)=\int_{0}^{\infty}{dt\, t^{z-1}e^{-t}}[/tex] . It has poles for integers of z less than 1 and is finite everywhere else. But to me it seems like it should be infinite for non integer values of z less than 0.(adsbygoogle = window.adsbygoogle || []).push({});

My reasoning: when t is close to 0, the function t[tex]^{z-1}[/tex]e[tex]^{-t}[/tex] is approximately equal to t[tex]^{z-1}[/tex].

The integral [tex]\int_{t_1}^{t_2}{dt\, t^{z-1}}[/tex] is equal to ([tex]t_2^{z}[/tex] - [tex]t_1^{z}[/tex])/z. When z<0 and [tex]t_1 = 0[/tex], [tex]t_1^{z}[/tex] is infinite. Thus it seems the integral [tex]\int_{0}^{\infty}{dt\, t^{z-1}e^{-t}}[/tex] has an infinite contribution right after t=0 for z<0.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trouble understanding the Gamma function

**Physics Forums | Science Articles, Homework Help, Discussion**