MHB Truth Table for P(x) & R(x), ~Q(x) & P(x) in U

  • Thread starter Thread starter trevor
  • Start date Start date
  • Tags Tags
    Table Truth table
AI Thread Summary
The discussion focuses on constructing a truth table for the propositions P(x), Q(x), and R(x) over a specified universe U. P(x) is defined as x ≥ 4, Q(x) as x² = 25, and R(x) as x being a multiple of 2. Participants are encouraged to explain their problem-solving attempts and clarify any ambiguities, such as the variable 's' in the definition of R(x). The use of truth tables in predicate logic is justified due to the finite nature of the universe. The thread emphasizes the importance of accurately representing mathematical expressions to avoid confusion.
trevor
Messages
6
Reaction score
0
Consider the following open propositions over the universe U = {− 4,−2, 0, 1, 3, 5, 6,
8, 10}
P(x): x ≥ 4
Q(x): x 2 = 25
R(x): s is a multiple of 2
Find on a single truth table the truth-values of the following.
i. P(x ) ∧ R (x )
ii. [~ Q(x )] ∧ P(x )]
 
Physics news on Phys.org
Please note that according to https://mathhelpboards.com/rules/ 11 you are expected to explain your attempts at solving the problem or describe your difficulty. At the very least please make sure that the problem statement is typed correctly and not simply copied, which results in formulas like "x 2 = 25", which don't make sense. And what is $s$ in "$s$ is a multiple of 2" since it is supposed to be the definition of $R(x)$?

Truth tables are not usually used in predicate logic, but since the universe is finite, their use makes sense here. I assume the table should look like this (I use 0 for false and 1 for true).
\[
\begin{array}{r|c|c|c|c|c}
x & P(x) & Q(x) & R(x) & P(x)\land R(x) & \neg Q(x)\land P(x)\\
\hline
-4&0&&1&0&\\
-2&0&&1&0&\\
0&0&&1&0&\\
1&0&&0&0&\\
3&0&&0&0&\\
5&1&&&&\\
6&&&&&\\
8&&&&&\\
10&&&&&
\end{array}
\]
Try filling the rest of the table.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top