Trying to find an easier way to compute the double sum

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary

Homework Help Overview

The discussion revolves around the computation of a double sum, specifically the expression $$\sum_{i=0}^n\sum_{j=i+1}^n j$$ and its relationship to the sum of squares $$\sum_{i=1}^ni^2$$. Participants explore different approaches to prove this equality without directly computing the sums.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Some participants attempt to manipulate the boundaries of the summation to find alternative expressions for the double sum. Others express confusion over the correctness of their transformations and seek clarification on whether their results align with known identities.

Discussion Status

The discussion is ongoing, with participants sharing their calculations and questioning the validity of their approaches. Some have provided partial computations and are inviting others to contribute to completing the reasoning. There is a mix of interpretations regarding the relationship between the double sum and the sum of squares.

Contextual Notes

Participants note the challenge of proving the equality without resorting to direct computation and express uncertainty about the implications of their findings. There is also mention of the binomial theorem in relation to the sum of squares, though its relevance to the current problem is not fully explored.

docnet
Messages
796
Reaction score
486
Homework Statement
.
Relevant Equations
.
I computed the double sum
$$\sum_{i=0}^n\sum_{j=i+1}^n j = \sum_{i=0}^n\big(\frac{n(n+1)}{2}-\frac{i(i+1)}{2}\big)=\frac{n(n+1)(2n+1)}{6}$$
and realized the double sum is equal to $$\sum_{i=1}^ni^2$$
which leads to
$$\sum_{i=0}^n\sum_{j=i+1}^n j = \sum_{i=1}^ni^2$$

Is there a proof of this equality that doesn't require computing out the sums?

I thought that I should try changing the boundaries of integration

##0\leq i+1\leq j\leq n## so

$$\sum_{i=0}^n\sum_{j=i+1}^n j = \sum_{j=0}^n\sum_{i=0}^j j = \sum_{j=0}^n j(j+1)=\Big(\frac{n(n+1)}{2}+1\Big)\Big(\frac{n(n+1)}{2}\Big)$$

but I was unable to even do this properly since the above isn't equal to ##\frac{n(n+1)(2n+1)}{6}##
 
Last edited:
Physics news on Phys.org
docnet said:
I thought that I should try changing the boundaries of integration
Summation, not integration...
docnet said:
##0\leq i+1\leq j\leq n## so

$$\sum_{i=0}^n\sum_{j=i+1}^n j = \sum_{j=0}^n\sum_{i=0}^j j \dots$$

but I was unable to even do this properly since the above isn't equal to ##\frac{n(n+1)(2n+1)}{6}##
I would work with the two summations above, with paper and pencil, to see if they are generating the same terms. If not, that's your answer.
 
If I understand correctly, write\begin{align*}
\sum_{i=0}^n \sum_{j=i+1}^n j &= \sum_{i=0}^n \left( \frac{n(n+1)}{2} - \frac{i(i+1)}{2} \right) \\
&= \frac{n(n+1)^2}{2} - \dfrac{1}{2} \sum_{i=0}^n i^2 - \dfrac{1}{2} \sum_{i=0}^n i \\
&= \frac{n(n+1)^2}{2} - \dfrac{1}{2} \sum_{i=0}^n i^2 - \dfrac{n(n+1)}{4} \\
&= \dfrac{3}{2} \cdot \dfrac{n(n+1)(2n+1)}{6} - \dfrac{1}{2} \sum_{i=0}^n i^2
\end{align*}Can you finish it?
 
ergospherical said:
If I understand correctly, write\begin{align*}
\sum_{i=0}^n \sum_{j=i+1}^n j &= \sum_{i=0}^n \left( \frac{n(n+1)}{2} - \frac{i(i+1)}{2} \right) \\
&= \frac{n(n+1)^2}{2} - \dfrac{1}{2} \sum_{i=0}^n i^2 - \dfrac{1}{2} \sum_{i=0}^n i \\
&= \frac{n(n+1)^2}{2} - \dfrac{1}{2} \sum_{i=0}^n i^2 - \dfrac{n(n+1)}{4} \\
&= \dfrac{3}{2} \cdot \dfrac{n(n+1)(2n+1)}{6} - \dfrac{1}{2} \sum_{i=0}^n i^2
\end{align*}Can you finish it?
Hi, Thank you so much!

This is the way I computed the sum initially.

$$\dfrac{3}{2} \cdot \dfrac{n(n+1)(2n+1)}{6} - \dfrac{1}{2} \sum_{i=0}^n i^2$$

I used the identity
$$ \sum_{i=0}^n i^2=\dfrac{n(n+1)(2n+1)}{6}$$

so
$$\dfrac{3}{2} \cdot \dfrac{n(n+1)(2n+1)}{6} - \dfrac{1}{2} \sum_{i=0}^n i^2=\dfrac{n(n+1)(2n+1)}{6}$$

In the OP I was wondering if this was a coincidence that the double sum was equal to
$$\sum_{i=0}^n i^2$$

sorry, I suck at syntax.
 
Last edited:
this is the explanation I could find for the sum of squares: In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.
Screen Shot 2021-11-25 at 4.46.19 AM.png
 
  • Informative
Likes   Reactions: Office_Shredder
The double sum is equal to
1 + 2 + 3 + 4 + ... + n
+ 2 + 3 + 4 + ... + n
+ 3 + 4 + ... + n
...
+n
=1*1 + 2*2 + 3*3 + ... + n*n
 
  • Love
Likes   Reactions: docnet
mjc123 said:
The double sum is equal to
1 + 2 + 3 + 4 + ... + n
+ 2 + 3 + 4 + ... + n
+ 3 + 4 + ... + n
...
+n
=1*1 + 2*2 + 3*3 + ... + n*n
well that answers my wuestion nicely. thank you :)
 
  • Love
Likes   Reactions: docnet

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
596
  • · Replies 29 ·
Replies
29
Views
7K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K