Two basic exercises on order statistics

Click For Summary
The discussion revolves around two exercises related to order statistics, specifically focusing on the probabilities associated with ordered samples. For part (a), the initial solution suggests that the probability of a specific ordering is 1/n!, but there is uncertainty regarding the necessity of the continuous distribution assumption. In part (b), the reasoning indicates that the probability of finding a specific observation as the k-th smallest is 1/n, but further clarification reveals that the correct probability for maintaining this order with an additional observation is actually 1/(n+1). The conversation highlights the importance of considering ties in discrete distributions and explores different interpretations of the probability questions posed. Overall, the discussion emphasizes the complexities of order statistics and the conditions under which certain probabilities hold.
psie
Messages
315
Reaction score
40
Homework Statement
Let ##X_{(k)}## denote the ##k##th order variable of a sample of size ##n##, where ##X_1,\ldots,X_n## is the sample from a distribution with distribution function ##F##. Suppose that ##F## is continuous.

(a) Compute ##P(X_k=X_{(k)},k=1,2,\ldots,n)##, that is, the probability that the original, unordered sample is in fact (already) ordered.
(b) Compute ##P(X_{k;n}=X_{k;n+1})##, that is, the probability that the ##k##th smallest observation still is the ##k##th smallest observation. (Here ##X_{k;n}## is still the ##k##th order variable, and the ##n## simply denotes the sample size.)
Relevant Equations
The number of permutations of ##n## distinct objects is ##n!##.
Note, it's not assumed anywhere that ##X_1,\ldots,X_n## are independent.

My solution to (a) is simply ##1/n!##, since we've got ##n!## possible orderings, and one of the orderings is the ordered one, so ##1/n!##. However, I am not sure this is correct, since I don't understand why the assumption ##F## continuous is necessary. Grateful for an explanation.

For (b), my answer I think is not complete. I reasoned as follows; if we're given a sample of size ##n##, the probability to find ##X_k## as ##X_{k;n}## is ##1/n##, since there are again ##n!## orderings and in ##(n-1)!## of these we'll find ##X_k## as ##X_{k;n}##, so ##(n-1)!/n!=1/n##. This is all I got for (b). I think there's something missing.
 
Physics news on Phys.org
psie said:
However, I am not sure this is correct, since I don't understand why the assumption ##F## continuous is necessary.
If it was a discrete probability, you would have to worry about ties.
psie said:
For (b), my answer I think is not complete. I reasoned as follows; if we're given a sample of size ##n##, the probability to find ##X_k## as ##X_{k;n}## is ##1/n##, since there are again ##n!## orderings and in ##(n-1)!## of these we'll find ##X_k## as ##X_{k;n}##, so ##(n-1)!/n!=1/n##. This is all I got for (b). I think there's something missing.
That seems logical to me.
 
FactChecker said:
That seems logical to me.
Thanks! Part (b) seems kind of strange to me. Seems like a conditional probability, i.e. given that the sample of size ##n## is ordered, what is the probability that it still will be ordered when making one further observation? This is ##1/n##.

EDIT: The probability that it will still be ordered is ##1/(n+1)##. The statements I made concerning part (b) in post #1 are correct I think, but here I am making a different statement.
 
Last edited:
  • Like
Likes FactChecker
I think there is another way of interpreting the question and I think this is the correct way. I don't know how else to put it other than the way the problem originally put it. What is the probability that the ##k##th smallest observation is the ##k##th smallest observation? This is the probability ##P(X_{n+1}>X_{k;n})##. Consider $$\underbrace{\phantom{\quad}}_{\text{1st slot}}X_{1;n}\underbrace{\phantom{\quad}}_{\text{2nd slot}}X_{2;n}\quad\ldots\quad X_{n;n}\underbrace{ \ }_{(n+1)\text{st slot}}.$$Now, there are ##(n-k+1)## slots above ##X_{k;n}##, so the probability that the ##k##th smallest observation remains the ##k##th smallest one is ##\frac{n-k+1}{n+1}##.
 
  • Like
Likes FactChecker

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
Replies
8
Views
1K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
Replies
21
Views
975
Replies
9
Views
1K