Two dimensional motion problem (kicking a soccer ball into the goal)

AI Thread Summary
The discussion focuses on solving a two-dimensional motion problem involving kicking a soccer ball into a goal. The user initially applies the formulas for the x and y components of motion but realizes discrepancies in their calculations, particularly regarding the angle of projection. A correction is suggested for the x component equation, emphasizing the need to consider the total flight time and ascent time. Additionally, the importance of using the correct gravitational constant is highlighted, as it affects the calculations. The conversation concludes with a reminder to utilize the formulas for range and total time of flight to solve the problem accurately.
Ineedhelpwithphysics
Messages
43
Reaction score
7
Homework Statement
Carli Lloyd scored half-field goal (53 m) vs. Japan with a beautiful projectile motion. It looks from the video that the ball was inthe air for 2.0 seconds. What was the angle of the ball when it left her foot?
Relevant Equations
VoX = vcos(theta)
VoY = vsin(theta)
Vf(y) = Vo(y) + a(y)t
Delta y = VoY + 1/2a(y)t^2
I did this too fast idk if I'm wrong

So for the x component
use the formula d = rt / delta x = v*t
26 = vcos(theta)

y component
use the displacement formula
19.6 = vsin(theta)

tan^-1(19.6/26) = 36.5 degrees
the answer key says 20.2 degrees idk whats wrong
 
Physics news on Phys.org
I did wrong calculations please ignore this
 
I get the angle 20.67 with ##g=10m/s^2##.
Your first equation is almost correct, it should be $$\frac{53}{2}=v_0\cos\theta$$
But no clue how did you infer the 2nd equation.
Hint: if the total flight time is 2.0 sec what is the total ascent time, ##t_A## ,that is the time the ball rises from the initial point to its highest point, and how ##v_{0y}=v_0\sin\theta## relates to ##t_A##?

Now I see that your second equation is also almost..... correct up to a factor of 2 e hehe and with ##g=9.8m/s^2##
 
What is the formula the for range ##R## of a projectile and its total time of flight ##T##? Those two are the ones you need to answer the question @Ineedhelpwithphysics
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top