Solving a Closed System w/Conservative Forces: Is E1=E2 Always True?

Click For Summary
SUMMARY

The discussion centers on the application of energy conservation principles in a closed system with conservative forces, specifically addressing the equation E1=E2 for two particles under gravitational influence. It is established that while E1=E2 holds true in simplified scenarios, such as when one mass is significantly larger than the other (e.g., a small mass near Earth), this is an approximation. The potential energy, represented as -Gm1m2/r, is a property of the system as a whole and cannot be attributed to individual particles. The two-body problem is highlighted as a method for analyzing the motion of one particle relative to another in a non-inertial frame.

PREREQUISITES
  • Understanding of gravitational potential energy, specifically -Gm1m2/r
  • Familiarity with the concept of conservative forces
  • Knowledge of the two-body problem in classical mechanics
  • Basic principles of motion in non-inertial frames
NEXT STEPS
  • Research the two-body problem in classical mechanics
  • Study the derivation and implications of gravitational potential energy
  • Explore the concept of non-inertial frames and their effects on motion
  • Learn about the equations of motion for systems with varying mass
USEFUL FOR

Students and professionals in physics, particularly those focusing on classical mechanics, gravitational systems, and energy conservation principles. This discussion is beneficial for anyone seeking to deepen their understanding of the dynamics of two-body systems under conservative forces.

LCSphysicist
Messages
644
Reaction score
163
Homework Statement
Two particles of mass m1 and m2 are released in rest, they are separated by a distance ro, and all motion is by the mutual gravitational attraction. Calc their velocity when their distance is r < ro.
Relevant Equations
All below.
This problem is very easy to solve considering that the two particles belong a closed system under action of conservatives force.

My doubt is if it is possible to solve the problem by consider one particle by time, that is:

Suppose that we know the particle m one is under gravitational force, at first its energy is = -Gm1m2/ro

After certain time, the distance to the central force will be r, and so -Gm1m2/r + m1v²/2.

If we apply E1=E2, it will be wrong! The question is why, since all forces are conservative.

For example, we can say that m2 is like the earth, when we apply to m1 E1=E2 is right, but in this case no.

This make me wonder that E1 = E2 under the gravitational field of the Earth is actually a approximation (yes, good).
 
Physics news on Phys.org
LCSphysicist said:
Suppose that we know the particle m one is under gravitational force, at first its energy is = -Gm1m2/ro

After certain time, the distance to the central force will be r, and so -Gm1m2/r + m1v²/2.

Remember that the potential energy ##-\frac{Gm_1 m_2}{r}## is a property of the system (pair) of masses, and cannot be attributed to anyone of the particles individually.

In the special case that one of the masses is significantly larger than the other, you can make the approximation that zero work is done by gravity on the large mass (i.e. it doesn't move) and you can "attribute" all of the potential energy to the smaller mass. This is what we do when considering the "GPE of an object" above the Earth.

If you want to solve it one particle at a time, you might consider looking into the two-body problem. Specifically, try and see if you can form an equation of motion of one body w.r.t. the position of the other body (which occupies a non-inertial frame).
 
Last edited by a moderator:
  • Like
Likes   Reactions: LCSphysicist
etotheipi said:
Remember that the potential energy ##-\frac{Gm_1 m_2}{r}## is a property of the system (pair) of masses, and cannot be attributed to anyone of the particles individually.

In the special case that one of the masses is significantly larger than the other, you can make the approximation that zero work is done by gravity on the large mass (i.e. it doesn't move) and you can "attribute" all of the potential energy to the smaller mass. This is what we do when considering the "GPE of an object" above the Earth.

If you want to solve it one particle at a time, you might consider looking into the two-body problem. Specifically, try and see if you can form an equation of motion of one body w.r.t. the position of the other body (which occupies a non-inertial frame).
Woll, that's truth, by working most of the time with two bodies with masses very different, i just forget that the potential energy is property of the system :S, thx
 
You can try this. Let ##\vec{F}_{12} = m_1\ddot{\vec{x}}_1## and ##\vec{F}_{21} = m_2\ddot{\vec{x}}_2## be equations of motion in the inertial (space) frame. Now $$\vec{a}_{21} = \ddot{\vec{x}}_2 - \ddot{\vec{x}}_1 = \frac{1}{m_2}\vec{F}_{21} - \frac{1}{m_1}\vec{F}_{12} = (\frac{1}{m_1} + \frac{1}{m_2})\vec{F}_{21}$$ You end up with $$\vec{F}_{21} = \frac{m_1 m_2}{m_1 + m_2}\vec{a}_{21} = \mu \vec{a}_{21}$$So now you can let ##\vec{F}_{21} = -\frac{Gm_1 m_2}{r^3}\vec{r}## and solve for the relative motion!
 

Similar threads

Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
15
Views
2K
Replies
20
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K