inv
- 46
- 0
[Solved]Two planes->x+2y-2z=2 & 2x-3y+6z=3 intersect in straight line l
Hi.I've two planes' equation x+2y-2z=2 & 2x-3y+6z=3.The planes intersect in the straight line l. The question:Find a vector equation for the line l.
a.n=0 if they're both perpendicular 2 ea other
r.n=a.n ,where n=perpendicular to both r and a
3 dimensional vector equation formula:{A position vector of line}+t{direction vector of line},where t is a variable.
1(x)+2(y)-2(z)=0
1(2)+2(1)-2(2)=0
\left(\begin{array}{cc}2\\1\\2\end{array}\right)
x+2y-2z=2
(2)+2(1)-2(1)=2
\left(\begin{array}{cc}2\\1\\1\end{array}\right)
r_{1}=\left(\begin{array}{cc}2\\1\\1\end{array}\right)+t\left(\begin{array}{cc}2\\1\\2\end{array}\right)
2x-3y+6z=0
2(1)+3(8/3)+6(1)=0
3\left(\begin{array}{cc}1\\\frac{8}{3}\\1\end{array}\right)=\left(\begin{array}{cc}3\\8\\3\end{array}\right)
2x-3y+6z=3
2(3)-3(7)+6(3)=3
\left(\begin{array}{cc}3\\7\\3\end{array}\right)
r_{2}=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+m\left(\begin{array}{cc}3\\8\\3\end{array}\right)
Putting r_{2} in 1st plane cartesian equation getting:
(3+3m)+2(7+8m)-2(3+3m)=2
m=\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)
r_{2}=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+m\left(\begin{array}{cc}3\\8\\3\end{array}\right)
=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)\left(\begin{array}{cc}3\\8\\3\end{array}\right)
=\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)...\alpha
Putting r_{1} into 2nd cartesian equation getting:
2(2+2t)-3(1+t)+6(1+2t)=3
t=\frac{-4}{13}
r_{1}=\left(\begin{array}{cc}2\\1\\1\end{array}\right)+\left(\begin{array}{cc}\frac{-4}{13}\\\end{array}\right)\left(\begin{array}{cc}2\\1\\2\end{array}\right)
=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)...\beta
\beta-\alpha=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)-\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)=\frac{1}{13}\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)
l's vector equation=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)+w\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)
Anything wrong thus?
Homework Statement
Hi.I've two planes' equation x+2y-2z=2 & 2x-3y+6z=3.The planes intersect in the straight line l. The question:Find a vector equation for the line l.
Homework Equations
a.n=0 if they're both perpendicular 2 ea other
r.n=a.n ,where n=perpendicular to both r and a
3 dimensional vector equation formula:{A position vector of line}+t{direction vector of line},where t is a variable.
The Attempt at a Solution
1(x)+2(y)-2(z)=0
1(2)+2(1)-2(2)=0
\left(\begin{array}{cc}2\\1\\2\end{array}\right)
x+2y-2z=2
(2)+2(1)-2(1)=2
\left(\begin{array}{cc}2\\1\\1\end{array}\right)
r_{1}=\left(\begin{array}{cc}2\\1\\1\end{array}\right)+t\left(\begin{array}{cc}2\\1\\2\end{array}\right)
2x-3y+6z=0
2(1)+3(8/3)+6(1)=0
3\left(\begin{array}{cc}1\\\frac{8}{3}\\1\end{array}\right)=\left(\begin{array}{cc}3\\8\\3\end{array}\right)
2x-3y+6z=3
2(3)-3(7)+6(3)=3
\left(\begin{array}{cc}3\\7\\3\end{array}\right)
r_{2}=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+m\left(\begin{array}{cc}3\\8\\3\end{array}\right)
Putting r_{2} in 1st plane cartesian equation getting:
(3+3m)+2(7+8m)-2(3+3m)=2
m=\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)
r_{2}=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+m\left(\begin{array}{cc}3\\8\\3\end{array}\right)
=\left(\begin{array}{cc}3\\7\\3\end{array}\right)+\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)\left(\begin{array}{cc}3\\8\\3\end{array}\right)
=\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)...\alpha
Putting r_{1} into 2nd cartesian equation getting:
2(2+2t)-3(1+t)+6(1+2t)=3
t=\frac{-4}{13}
r_{1}=\left(\begin{array}{cc}2\\1\\1\end{array}\right)+\left(\begin{array}{cc}\frac{-4}{13}\\\end{array}\right)\left(\begin{array}{cc}2\\1\\2\end{array}\right)
=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)...\beta
\beta-\alpha=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)-\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)=\frac{1}{13}\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)
l's vector equation=\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)+w\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)
Anything wrong thus?
Last edited: