Say, [tex]x_1{}[/tex]... [tex]x_n_+_1{}[/tex] are iid Bernoulli random variables with parameter p.(adsbygoogle = window.adsbygoogle || []).push({});

I want an unbiased estimator for probability Pr([tex]\Sigma_{}[/tex] [tex]x_1_._._._n{}[/tex] > [tex]x_n_+_1{}[/tex] )

I have failed to establish E(1 - [tex]\Pi[/tex] [tex]x_i{}[/tex]) is unbiased estimator for the probability.

Any hints? thanks.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Unbiased estimator of a probability?

Loading...

Similar Threads for Unbiased estimator probability | Date |
---|---|

Unbiased estimate of a parameter in the Rice distribution | Mar 29, 2018 |

Unbiased estimator for The exponential | Dec 23, 2011 |

What is an unbiased estimator ? | Nov 5, 2011 |

Asymptotically unbiased & consistent estimators | Jul 8, 2011 |

Unbiased estimator | Jan 15, 2011 |

**Physics Forums - The Fusion of Science and Community**