I Unbihexium could have a half-life of millions of years?

  • I
  • Thread starter Thread starter swampwiz
  • Start date Start date
  • Tags Tags
    Half-life Years
Click For Summary
Unbihexium, or element 120, could potentially have a half-life of millions of years, making it more useful than previously thought, according to estimates. However, the discussion highlights that current research is limited, with no new discoveries since a 2016 article, and the production of oganesson (element 118) has been minimal and costly. The likelihood of producing long-lived isotopes for practical applications remains uncertain, as only a few atoms of oganesson have been created in extensive accelerator runs. The high costs associated with the necessary precursors further complicate the feasibility of studying heavier elements. Overall, while the potential for long half-lives exists, the practical implications and applications are still unclear.
Physics news on Phys.org
Seems too early to tell.
 
swampwiz said:
This article seems to say that the range of estimates go this high. This could be something that would actually stay around long enough to be of some use.

https://www.chemistryworld.com/news...e-next-row-of-the-periodic-table/9400.article
Note that the cited article was published in January 2016 (and it reflects state of the art as of 2015), so it's at least 5 years old, and there has been no discoveries.

A more recent article from 2018 gives some overview/insight into the discoveries up through oganesson (Z = 118) and prospects for heavier nuclei.
https://www.degruyter.com/document/doi/10.1515/pac-2018-0918/html
 
A long lifetime can't be ruled out but it doesn't look particularly likely.

A few nuclei of oganesson (118) have been produced in weeks of accelerator runs. The cross section for element 120 should be even smaller. What's the possible application for a few long-living nuclei?
 
  • Like
Likes Astronuc and Motore
mfb said:
A long lifetime can't be ruled out but it doesn't look particularly likely.

A few nuclei of oganesson (118) have been produced in weeks of accelerator runs. The cross section for element 120 should be even smaller. What's the possible application for a few long-living nuclei?
Indeed. Only a few atoms of oganesson have been produced and at great expense.

https://www.webelements.com/oganesson/history.html

The precursors are quite expensive themselves.

48Ca has a limited abundance of 0.187% and must be separated from the natural element, hence the high cost, as well as the high cost of the target, 249Cf.

86Kr has an abundance of 17.28%, and a slight majority of natural Pb is 208Pb.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...