I've been exposed to two different interpretations of the uncertainty principle.(adsbygoogle = window.adsbygoogle || []).push({});

1) If an electron is in a certain state, a measurement of its position will yield a definite result. However, if after the measurement the electron could be returned to the same state, then a repeated measurement of its position will yield a different answer. Same holds for measurements of momentum. However, the standard deviation of the distribution for positions * the standard deviation for the distribution for momentum will always be greater than a certain constant.

2) Measurements are fuzzy. Measurements of, say, position will never yield a definite result, unless the momentum becomes completely unknown.

Which one is right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uncertainty principle and electrons

**Physics Forums | Science Articles, Homework Help, Discussion**