Understanding basic statistical mechanics formulas

Click For Summary
SUMMARY

This discussion focuses on the derivation and significance of statistical mechanics formulas, particularly the velocity and speed distributions in the context of the Maxwell-Boltzmann distribution. The first formula presented, fs(v) = 4πv²f(v), illustrates the relationship between speed distribution and velocity distribution. The second formula addresses the angular dependence of molecular velocities, emphasizing that while velocity is a vector with direction, the distribution function does not account for directionality. The integration of these concepts leads to a comprehensive understanding of molecular speed distributions in three-dimensional space.

PREREQUISITES
  • Understanding of Maxwell-Boltzmann distribution
  • Familiarity with spherical coordinates in three-dimensional space
  • Knowledge of vector calculus and integration techniques
  • Basic concepts of statistical mechanics
NEXT STEPS
  • Study the derivation of the Maxwell-Boltzmann distribution in detail
  • Learn about the significance of angular distributions in statistical mechanics
  • Explore advanced integration techniques in multiple dimensions
  • Investigate applications of statistical mechanics in thermodynamics
USEFUL FOR

Students and researchers in physics, particularly those specializing in statistical mechanics, thermodynamics, and molecular dynamics. This discussion is also beneficial for anyone looking to deepen their understanding of velocity distributions and their implications in physical systems.

phantomvommand
Messages
287
Reaction score
39
Screenshot 2021-02-25 at 10.45.20 PM.png

Firstly, I would like to check my understanding of the first formula:
Using velocity distribution = f(v), speed distribution = fs(v):
fs(v) = f(vx)f(vy)f(vz)dxdydz, since dxdydz = 4pi*v^2*dv, fs(v) = 4piv^2f(v)

The second formula is the confusing one:
What does it mean? What is the significance/meaning of the "angle"?
 
Physics news on Phys.org
Velocity is a vector, which means it has magnitude and direction. As stated, (2.33) gives the fraction of molecules that are within a speed interval and moving at an angle between ##\theta## and ##\theta+d\theta## measured from some axis. Equation (2.33) does not take direction into account and gives you the distribution in all directions.
 
If you have the distribution ##f(\vec{v})## for the velocity, then you get the distribution for any function of ##u=F(\vec{v})## by
$$p(u)=\int_{\mathbb{R}^3} \mathrm{d}^3 v f(\vec{v}) \delta[u-F(\vec{v})].$$
For the Maxwell-Boltzmann distribution it's easy to calculate, because in this case
$$f(\vec{v})=N \exp[-m v^2/(2 k T)].$$
Then just introduce spherical coordinates ##v,\vartheta,\varphi## and ##F(\vec{v})=v## in the general formula
$$p(u)=\int_0^{\infty} \mathrm{d} v \int_0^{\pi} \mathrm{d} \vartheta v^2 \sin \vartheta N \exp[-m v^2/(2kT)] \delta(u-v)=4 \pi N u^2 \exp[-m u^2/(2kT)].$$
 
  • Like
Likes   Reactions: aclaret
let ##g : R \times R \rightarrow R, (\theta, |v|) \mapsto g(\theta, |v|)##, where ##v \in R^3## and ##|v| = \sqrt{\langle v,v \rangle}##. by spherical symmetrie, ##f(v) = H(|v|)## for some ##H##$$\begin{align*}

\mathbb{P}(a < |v| < b \text{ and } \theta \leq c) &= \int_0^c \int_a^b g(\theta, |v|) d|v| d\theta \\

&\overset{!}{=} \int_0^{c} \int_{0}^{2\pi} \int_a^b f(v) |v|^2 \sin{\theta} \, d|v| d\phi d\theta \\

&= \int_0^c \int_a^b 2 \pi |v|^2 f(v) \sin{\theta} \, d|v| d\theta

\end{align*}$$follow that $$g(\theta, |v|) = 2\pi |v|^2 f(v) \sin{\theta} = \frac{1}{2} \left(4\pi |v|^2 f(v) \right) \sin{\theta} = \frac{1}{2} f_s(|v|) \sin{\theta}$$
 
Last edited:
  • Like
Likes   Reactions: Charles Link and vanhees71

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K