Understanding basic statistical mechanics formulas

Click For Summary

Discussion Overview

The discussion revolves around understanding basic statistical mechanics formulas, particularly focusing on velocity and speed distributions in the context of the Maxwell-Boltzmann distribution. Participants explore the implications of these formulas, their derivations, and the significance of angles in velocity distributions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant checks their understanding of the relationship between velocity distribution and speed distribution, proposing a formula that connects them.
  • Another participant clarifies that velocity is a vector with both magnitude and direction, explaining that a specific formula gives the fraction of molecules within a speed interval at a certain angle.
  • A different participant provides a mathematical approach to deriving the distribution for any function of velocity, specifically applying it to the Maxwell-Boltzmann distribution and introducing spherical coordinates.
  • Another contribution introduces a function that relates angle and speed, deriving a relationship that connects the probability of certain speed and angle conditions to the overall distribution.

Areas of Agreement / Disagreement

Participants present various interpretations and mathematical approaches without reaching a consensus. Multiple competing views on the significance of angles and the derivation of distributions remain evident.

Contextual Notes

Some assumptions about the definitions of velocity and speed distributions may not be explicitly stated. The discussion includes unresolved mathematical steps and the implications of spherical symmetry.

phantomvommand
Messages
287
Reaction score
39
Screenshot 2021-02-25 at 10.45.20 PM.png

Firstly, I would like to check my understanding of the first formula:
Using velocity distribution = f(v), speed distribution = fs(v):
fs(v) = f(vx)f(vy)f(vz)dxdydz, since dxdydz = 4pi*v^2*dv, fs(v) = 4piv^2f(v)

The second formula is the confusing one:
What does it mean? What is the significance/meaning of the "angle"?
 
Physics news on Phys.org
Velocity is a vector, which means it has magnitude and direction. As stated, (2.33) gives the fraction of molecules that are within a speed interval and moving at an angle between ##\theta## and ##\theta+d\theta## measured from some axis. Equation (2.33) does not take direction into account and gives you the distribution in all directions.
 
If you have the distribution ##f(\vec{v})## for the velocity, then you get the distribution for any function of ##u=F(\vec{v})## by
$$p(u)=\int_{\mathbb{R}^3} \mathrm{d}^3 v f(\vec{v}) \delta[u-F(\vec{v})].$$
For the Maxwell-Boltzmann distribution it's easy to calculate, because in this case
$$f(\vec{v})=N \exp[-m v^2/(2 k T)].$$
Then just introduce spherical coordinates ##v,\vartheta,\varphi## and ##F(\vec{v})=v## in the general formula
$$p(u)=\int_0^{\infty} \mathrm{d} v \int_0^{\pi} \mathrm{d} \vartheta v^2 \sin \vartheta N \exp[-m v^2/(2kT)] \delta(u-v)=4 \pi N u^2 \exp[-m u^2/(2kT)].$$
 
  • Like
Likes   Reactions: aclaret
let ##g : R \times R \rightarrow R, (\theta, |v|) \mapsto g(\theta, |v|)##, where ##v \in R^3## and ##|v| = \sqrt{\langle v,v \rangle}##. by spherical symmetrie, ##f(v) = H(|v|)## for some ##H##$$\begin{align*}

\mathbb{P}(a < |v| < b \text{ and } \theta \leq c) &= \int_0^c \int_a^b g(\theta, |v|) d|v| d\theta \\

&\overset{!}{=} \int_0^{c} \int_{0}^{2\pi} \int_a^b f(v) |v|^2 \sin{\theta} \, d|v| d\phi d\theta \\

&= \int_0^c \int_a^b 2 \pi |v|^2 f(v) \sin{\theta} \, d|v| d\theta

\end{align*}$$follow that $$g(\theta, |v|) = 2\pi |v|^2 f(v) \sin{\theta} = \frac{1}{2} \left(4\pi |v|^2 f(v) \right) \sin{\theta} = \frac{1}{2} f_s(|v|) \sin{\theta}$$
 
Last edited:
  • Like
Likes   Reactions: Charles Link and vanhees71

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K