Understanding Basis Change with Hamiltonian Matrices

Click For Summary
The discussion focuses on representing a Hamiltonian matrix H in a new basis formed by eigenvectors la'> and lb'>. The confusion arises around the meaning of matrix representation in different bases and the relationship between the basis change equation H' = SHS^-1 and the inner product method for calculating matrix elements. It is clarified that for orthonormal bases, the transformation operator U must be unitary, ensuring the preservation of inner products. The relationship between the two methods is established, showing that the components of H in the new basis can be derived from the original matrix using the basis change equation. Understanding these concepts is crucial for correctly applying basis changes in quantum mechanics.
aaaa202
Messages
1,144
Reaction score
2
We are given the vectors la> = (1,0) and lb> = (0,1) and then a Hamiltonian H which is a 2x2 matrix with 2 on the diagonal entires and zero elsewhere. I am asked to now represent H in the basis of the vectors la'> = 1/sqrt(2)(1,1) and lb'> = 1/sqrt(2)(1,-1), which are also eigenvectors of H because of the degeneracy of the eigenvalues of H.
I always get confused with these basis-change problems. First of all: What does it even mean that a matrix is represented in a particular basis? Why is H necessarily represented in the basis (1,0) and (0,1)?
Secondly I know that the basis change equation is:
H' = SHS^-1 (1)
But my QM also tells me that the elements of H' can be found by taking the inner products <a'lHla'>, <a'lHlb'> etc. How is this equivalent to (1)?
 
Physics news on Phys.org
aaaa202 said:
What does it even mean that a matrix is represented in a particular basis?
See this FAQ post: https://www.physicsforums.com/threads/matrix-representations-of-linear-transformations.694922/
 
Last edited by a moderator:
Okay but I am still not sure why for an orthonormal basis the basis change equation:
B = SAS^-1
Reduces to just calculating B using the equations B_ij = <bil A lbj> , where b1,b2,b3... are the new basis vectors of the new basis expressed in the old basis.
 
I didn't have time to answer that before. Let U be the linear operator that takes the old basis vectors to the new, i.e. ##e_i'=Ue_i##. I'll start by proving that this U must be unitary (assuming that both bases are orthonormal). For all i,j, we have
$$\langle e_i,e_j\rangle =\delta_{ij}=\langle e_i',e_j'\rangle =\langle Ue_i,Ue_j\rangle =\langle e_i,U^\dagger U e_j\rangle,$$ and therefore
$$\langle e_i,(I-U^\dagger U)e_j\rangle =0.$$ This implies that for all j and all vectors x, we have
$$\langle x,(I-U^\dagger U)e_j\rangle =\left\langle\sum_{i=1}^2 x_i e_i,(I-U^\dagger U)e_j\right\rangle =\sum_{i=1}^2 (x_i)^* \langle e_i,(I-U^\dagger U)e_j\rangle =0.$$ In particular, this holds when ##x=(I-U^\dagger U)e_j##. That implies that for all j, we have ##(I-U^\dagger U)e_j=0##. This implies that ##U^\dagger U=I##.

Now if we define ##S=U^{-1}## and use that ##U^\dagger=U^{-1}##, we have
\begin{align}
H'_{ij}=\langle e_i',He_j'\rangle = \langle Ue_i,HUe_j\rangle =\langle e_i,U^\dagger HUe_j\rangle =(U^\dagger HU)_{ij} =(SHS^{-1})_{ij}
\end{align} In other words, the components of ##H## in the primed basis are the same as the components of ##SHS^{-1}## in the unprimed basis.
 
Last edited:
  • Like
Likes aaaa202
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K