Understanding Boundary Conditions in ODEs for Beginners

Click For Summary
The discussion centers around a boundary condition in a problem involving the injection of a liquid into water, specifically the condition $$s \to 0 \implies -4 \pi s^2 C \frac{\partial L}{\partial s} \to W$$, which indicates that the injection rate at the origin is equal to W. Participants express confusion about the physical meaning of this condition, particularly regarding the implications of infinite concentration at the point source. The relationship between surface area, flux, and mass flow rate is clarified, leading to a better understanding of the boundary condition. Overall, the conversation highlights the complexities of interpreting boundary conditions in ordinary differential equations (ODEs) related to mass transfer. The participants find the discussion helpful in grasping the underlying concepts.
member 428835
hi pf!

i was reading a sample problem in a text on ode's and came across a boundary condition that didnt really make sense to me.

the physical scenario is: a liquid ##L## measured in moles/cubic meter (##mol / m^3##) is injected into a stream of water. ##L## is being injected at a rate ##W## measured in (g-moles)/sec (##(g-mol) / s##). the following boundary condition is presented: $$s \to 0 \implies -4 \pi s^2 C \frac{\partial L}{\partial s} \to W$$ where ##s^2 = x^2 + y^2 + z^2##. this boundary condition physically represents that the injection rate at ##s=0## is ##W## (the coordinate system is centered at the injection site). ##C## is a constant, who's units are square meters per second (##m^2 / s##)

now i know ##4 \pi r^2## is the surface area of a sphere. also, we are given that molar flux, ##\vec{n}## is ##\vec{n}=-C\nabla L## which has units ##mol / (m^2 \times s)##.

thanks for any help on the help!
 
Physics news on Phys.org
It doesn't make much sense to me either. But, of course, it's in a math book, so who knows what the author knew about mass transfer. The implication is that somehow, there is a diffusive flow of mass from a point source into the stream, with no bulk movement of solvent involved. For this to happen, the concentration L at the point source s = 0 would have to be infinite. Pretty silly, huh. What they really are trying to say is that the mass flow rate of solute into the stream is W.

Chet
 
  • Like
Likes 1 person
thanks for the reply, chet.

yea, sometimes these conditions are pretty weird. i finally think i do have this one (surface area times surface flux). still uncomfortable, though.

thanks for helping me out a lot lately!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K