Sammywu
- 273
- 0
So, I just try to see whether QM is always of trace class.
Let [tex] M = \sum_n a_n P_{\psi_n} [/tex]
where
[tex] \sum_n a_n = 1 [/tex]
TR [tex] QM = \sum_n ( Q \sum_i a_i P_{\psi_i} \psi_n , \psi_n ) [/tex]
[tex] = \sum_n ( Q a_n \psi_n , \psi_n ) [/tex]
[tex] = \sum_n a_n ( Q \psi_n, \psi_n ) [/tex]
Assuming
[tex] b_n = | ( Q \psi_n, \psi_n ) | [/tex]
, whether QM is of trace class will depends on whether
[tex] \sum_n a_n b_n [/tex] converges.
So, if I can find a set of [tex] \psi_n [/tex] such that [tex] b_n = 2/a_n [/tex] , then I have a QM not of trace class.
Let [tex] M = \sum_n a_n P_{\psi_n} [/tex]
where
[tex] \sum_n a_n = 1 [/tex]
TR [tex] QM = \sum_n ( Q \sum_i a_i P_{\psi_i} \psi_n , \psi_n ) [/tex]
[tex] = \sum_n ( Q a_n \psi_n , \psi_n ) [/tex]
[tex] = \sum_n a_n ( Q \psi_n, \psi_n ) [/tex]
Assuming
[tex] b_n = | ( Q \psi_n, \psi_n ) | [/tex]
, whether QM is of trace class will depends on whether
[tex] \sum_n a_n b_n [/tex] converges.
So, if I can find a set of [tex] \psi_n [/tex] such that [tex] b_n = 2/a_n [/tex] , then I have a QM not of trace class.