Sammywu
- 273
- 0
So, I just try to see whether QM is always of trace class.
Let M = \sum_n a_n P_{\psi_n}
where
\sum_n a_n = 1
TR QM = \sum_n ( Q \sum_i a_i P_{\psi_i} \psi_n , \psi_n )
= \sum_n ( Q a_n \psi_n , \psi_n )
= \sum_n a_n ( Q \psi_n, \psi_n )
Assuming
b_n = | ( Q \psi_n, \psi_n ) |
, whether QM is of trace class will depends on whether
\sum_n a_n b_n converges.
So, if I can find a set of \psi_n such that b_n = 2/a_n , then I have a QM not of trace class.
Let M = \sum_n a_n P_{\psi_n}
where
\sum_n a_n = 1
TR QM = \sum_n ( Q \sum_i a_i P_{\psi_i} \psi_n , \psi_n )
= \sum_n ( Q a_n \psi_n , \psi_n )
= \sum_n a_n ( Q \psi_n, \psi_n )
Assuming
b_n = | ( Q \psi_n, \psi_n ) |
, whether QM is of trace class will depends on whether
\sum_n a_n b_n converges.
So, if I can find a set of \psi_n such that b_n = 2/a_n , then I have a QM not of trace class.