Sammywu
- 273
- 0
23). In trying to evaluate 22), I found I need something clearer about how to represent all vectors. Let me put all eigenvalues in one real line; for each q in this real line, we associate an eigenvector ^\rightarrow{q} with it. I want to avoid using | q > for now, because | q > is actually a ray. also, remember there are many vectors as c * ^\rightarrow{q} where | c | =1 can be placed here; let's just pick anyone of them.
So, now with a function c(q), we can do a vector integration over the q real line as:
\int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq
Note q in c(q) and dq is just a parameter and ^\rightarrow{q} is a vector, and also viewed a vector function paramterized by q.
24).Refering back to 21), all vectors can be represented now by:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c_n(q) ^\rightarrow{q} dq
25). In particular, let
\delta_n( q - q_0 ) = 1/n for q_0 - 1/2n <= q <= q_0 +1/2n and 0 elsewhere,
the eigenvector for q_0 can be represented as:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(q - q_0) ^\rightarrow{q} dq
26). And, for other vectors, c_n(q) can be set to a constant function c(q);
we can verify its consistency with the normal representation:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c_n(q) ^\rightarrow{q} dq =
\int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq =
\int_{ - \infty }^\infty c(q) lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(q \prime -q) ^\rightarrow{q \prime } dq \prime dq =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \int_{ - \infty }^\infty c(q) \delta_n(q \prime - q) ^\rightarrow{q \prime} dq dq \prime =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty ( \int_{ - \infty }^\infty c(q) \delta_n(q \prime - q) dq ) ^\rightarrow{q \prime} dq \prime =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c(q \prime) ^\rightarrow{q \prime} dq \prime
27). For inner products of c and d,
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , \int_{ - \infty }^\infty d(q \prime ) ^\rightarrow{q \prime } dq \prime ) =
\int_{ - \infty }^\infty \overline{d(q \prime)} ( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime} ) dq \prime
28). Now, I have to discuss what shall it be for
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime } )
First, if we look into the inner products of two eigenvectors \rightarrow{q \prime } and \rightarrow{q }, we can first think about what shall be the innerproduct betwen
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(u - q) ^\rightarrow{u} du
and
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(v - q \prime) ^\rightarrow{v} dv
.
Comparing it to a discreet case, I guess this could be
| ( q , q \prime) | = lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) \delta_i( u - q ) du
So, in general,
( q , q \prime) = e^{ia} lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_n( u - q \prime) \delta_n( u - q ) du
The phase factor is put into show the possibility of two out-of-phase eiegnvector. For now, we can assume our standard basis are in-phase vectors.
With this, we can further translate the inside part of 27) to.
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime} ) =
\int_{ - \infty }^\infty c(q) ( ^\rightarrow{q} , ^\rightarrow{q \prime} ) dq =
\int_{ - \infty }^\infty c(q) lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_n( u - q \prime) \delta_n( u - q ) du dq =
lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) \int_{ - \infty }^\infty c(q) \delta_j( u - q ) dq du =
lim_{ i \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) c(u) du =
c(q \prime)<br /> <br /> Placing that into 27), I got<br /> ( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , \int_{ - \infty }^\infty d(q \prime ) ^\rightarrow{q \prime } dq \prime ) =<br /> ( \int_{ - \infty }^\infty \overline{d(q \prime)} c ( q \prime) dq \prime
So, now with a function c(q), we can do a vector integration over the q real line as:
\int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq
Note q in c(q) and dq is just a parameter and ^\rightarrow{q} is a vector, and also viewed a vector function paramterized by q.
24).Refering back to 21), all vectors can be represented now by:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c_n(q) ^\rightarrow{q} dq
25). In particular, let
\delta_n( q - q_0 ) = 1/n for q_0 - 1/2n <= q <= q_0 +1/2n and 0 elsewhere,
the eigenvector for q_0 can be represented as:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(q - q_0) ^\rightarrow{q} dq
26). And, for other vectors, c_n(q) can be set to a constant function c(q);
we can verify its consistency with the normal representation:
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c_n(q) ^\rightarrow{q} dq =
\int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq =
\int_{ - \infty }^\infty c(q) lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(q \prime -q) ^\rightarrow{q \prime } dq \prime dq =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \int_{ - \infty }^\infty c(q) \delta_n(q \prime - q) ^\rightarrow{q \prime} dq dq \prime =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty ( \int_{ - \infty }^\infty c(q) \delta_n(q \prime - q) dq ) ^\rightarrow{q \prime} dq \prime =
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty c(q \prime) ^\rightarrow{q \prime} dq \prime
27). For inner products of c and d,
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , \int_{ - \infty }^\infty d(q \prime ) ^\rightarrow{q \prime } dq \prime ) =
\int_{ - \infty }^\infty \overline{d(q \prime)} ( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime} ) dq \prime
28). Now, I have to discuss what shall it be for
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime } )
First, if we look into the inner products of two eigenvectors \rightarrow{q \prime } and \rightarrow{q }, we can first think about what shall be the innerproduct betwen
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(u - q) ^\rightarrow{u} du
and
lim_{ n \rightarrow \infty } \int_{ - \infty }^\infty \delta_n(v - q \prime) ^\rightarrow{v} dv
.
Comparing it to a discreet case, I guess this could be
| ( q , q \prime) | = lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) \delta_i( u - q ) du
So, in general,
( q , q \prime) = e^{ia} lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_n( u - q \prime) \delta_n( u - q ) du
The phase factor is put into show the possibility of two out-of-phase eiegnvector. For now, we can assume our standard basis are in-phase vectors.
With this, we can further translate the inside part of 27) to.
( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , ^\rightarrow{q \prime} ) =
\int_{ - \infty }^\infty c(q) ( ^\rightarrow{q} , ^\rightarrow{q \prime} ) dq =
\int_{ - \infty }^\infty c(q) lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_n( u - q \prime) \delta_n( u - q ) du dq =
lim_{ i \rightarrow \infty } lim_{ j \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) \int_{ - \infty }^\infty c(q) \delta_j( u - q ) dq du =
lim_{ i \rightarrow \infty } \int_{ - \infty }^\infty \delta_i( u - q \prime) c(u) du =
c(q \prime)<br /> <br /> Placing that into 27), I got<br /> ( \int_{ - \infty }^\infty c(q) ^\rightarrow{q} dq , \int_{ - \infty }^\infty d(q \prime ) ^\rightarrow{q \prime } dq \prime ) =<br /> ( \int_{ - \infty }^\infty \overline{d(q \prime)} c ( q \prime) dq \prime