Understanding Quantum Symmetry Breaking

alphaone
Messages
46
Reaction score
0
Hi,
I have done classical symmetry breaking and now want to understand the quantum one. I have seen the statement that the symmetry is broken if and only if Q|0> not 0. Where |0> is the vacuum and Q is the associated charge of the broken symmetry. Why does this imply symmetry breaking? The way I know it a symmetry group G is broken to a subgroup H if the theory is invariant under G whereas the vacuum is invariant only under H, meaning h|0>=|0> for any h element H and g|0> not equal |0> for any g not in H. Is this the right definition? And if so does this imply Q|0> not 0 in the case of a broken symmetry?
 
Physics news on Phys.org
I think I figured it out myself:
Any symmetry transformation can be represented by either a unitary operator U or an antiunitary operator A acting on the space of states, i.e. U|phi> is the transformed state(for the case of a unitary operator) now if I am not mistaken we can write U = exp(i*x*Q) (x being a parameter here and not spacetime position) where Q is the associated charge of the symmetry. Then for the symmetry to be mainfest we require U|0>=|0> which is equivalent to saying Q|0>=0 when expanding the exponential. A question I have about this is: Does this also hold for symetries being represented by antihermitian operators, i.e. if the states transform under the symmetry as A|phi> can I still write A=exp(i*x*Q) where Q is the conserved charge? In this case the charge would then be antihermitian instead of hermitian, I guess.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top