MHB Understanding Random Variable Mapping and Probability Functions

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

What does it mean to give the mapping for a random variable? Do we have to give the outcome space and the probability function? Does it hold that $X: ( \Omega, P)\mapsto \mathbb{R}$ ? :unsure:
 
Physics news on Phys.org
mathmari said:
What does it mean to give the mapping for a random variable? Do we have to give the outcome space and the probability function? Does it hold that $X: ( \Omega, P)\mapsto \mathbb{R}$ ?
Hey mathmari!

From the wiki defintion:
A random variable $X$ is a measurable function $X \colon \Omega \to E$ from a set of possible outcomes $\Omega$ to a measurable space $E$.

[...]

The probability that $X$ takes on a value in a measurable set $S\subseteq E$ is written as

$$\operatorname{P}(X \in S) = \operatorname{P}(\{ \omega \in \Omega \mid X(\omega) \in S \})$$


To give a mapping means that we need to characterize that mapping uniquely. 🤔
 
Klaas van Aarsen said:
Hey mathmari!

From the wiki defintion:
A random variable $X$ is a measurable function $X \colon \Omega \to E$ from a set of possible outcomes $\Omega$ to a measurable space $E$.

[...]

The probability that $X$ takes on a value in a measurable set $S\subseteq E$ is written as

$$\operatorname{P}(X \in S) = \operatorname{P}(\{ \omega \in \Omega \mid X(\omega) \in S \})$$


To give a mapping means that we need to characterize that mapping uniquely. 🤔


The exercise statement is :

An urn 1 contains 2 red and 8 white balls. An urn 2 contains 4 red and 6 white balls. A ball is drawn from each urn.

(a) Give a suitable probability space.

(b) Tim receives 1 Euro if the ball from urn 1 is red. Lena receives 1 euro if the Ball from urn 2 is white. Give the mapping rule for a random variable X that describes the profit of Tim, and a random variable Y, which describes Lena's profit. Find the joint distribution of X and Y. Are X and Y independent?At (a) I have found the outcome space $\Omega =\{ (R,R), (R,W), (W,R),(W,W)\}$ and the probabilities \begin{align*}&p((R,R))=\frac{2}{10}\cdot \frac{4}{10}=\frac{2}{25} \\ &p((R,W))=\frac{2}{10}\cdot \frac{6}{10}=\frac{3}{25} \\ &p((W,R))=\frac{8}{10}\cdot \frac{4}{10}=\frac{8}{25} \\ &p((W,W))=\frac{8}{10}\cdot \frac{6}{10}=\frac{12}{25}\end{align*} At (b) we have \begin{align*}&X(R,R)=1 \\ &X(R,W)= 1\\ &X(W,R)=0 \\ &X(W,W)=0\end{align*} and so \begin{align*}&P(X=1)=P(R,R)+P(R,W)=\frac 2{25}+\frac 3{25}=\frac 15 \\ &P(X=0)=P(W,R)+P(W,W)=\frac{8}{25}+\frac{12}{25}=\frac{4}{5}\end{align*} So is the map that we are looking for the $X$, the $P$ or both of them or something completely else? :unsure:
 
The map of the random variable $X: \Omega \to \text{Euros}$ is given by what you've already found:
\begin{align*}&X(R,R)=€ 1 \\ &X(R,W)= € 1\\ &X(W,R)=€ 0 \\ &X(W,W)=€ 0\end{align*}
This fully identifies the mapping of $X$. (Nod)

The probability map is a different map that needs to be identified separately. 🤔
 
Klaas van Aarsen said:
The map of the random variable $X: \Omega \to \text{Euros}$ is given by what you've already found:
\begin{align*}&X(R,R)=€ 1 \\ &X(R,W)= € 1\\ &X(W,R)=€ 0 \\ &X(W,W)=€ 0\end{align*}
This fully identifies the mapping of $X$. (Nod)

The probability map is a different map that needs to be identified separately. 🤔

Ahh ok! Thank you for the clarification! 🤩
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top