Understanding Tensors: Finding the Value of a Tensor

  • Context: MHB 
  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Tensor Value
Click For Summary
SUMMARY

The discussion focuses on calculating the value of a tensor \(F\) defined as \(F = e^1 \otimes e_2 + e^2 \otimes (e_1 + 3e_3)\) for given vectors \(v\) and \(f\). The calculation shows that \(F(v, f) = 21\) by applying the formula \(e^i \otimes e_j(v, f) = v^i f_j\). The participants clarify the tensor's representation as a multilinear map and its relation to the standard and dual bases in vector spaces. The explanation emphasizes the importance of understanding tensor products and their computations in higher dimensions.

PREREQUISITES
  • Understanding of tensor notation and operations, specifically \(e^i \otimes e_j\)
  • Familiarity with vector spaces and dual spaces
  • Knowledge of multilinear maps and their properties
  • Basic linear algebra concepts, including matrix representation of tensors
NEXT STEPS
  • Study the properties of tensor products in linear algebra
  • Learn about the Kronecker product and its applications in tensor calculations
  • Explore the concept of dual spaces and their significance in tensor analysis
  • Investigate higher-dimensional tensor computations and their complexities
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with tensors, particularly those involved in advanced linear algebra and applications in theoretical frameworks.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a problem that I recently encountered and want to get an hint on how to solve. :)

Problem:

Find the value \(F(v,\,f)\) of the tensor \(F=e^1\otimes e_2+e^2\otimes (e_1+3e_3)\in T_{1}^{1}(V)\), where \(v=e_1+5e_2+4e_3\), \(f=e^1+e^2+e^3\).
 
Physics news on Phys.org
Oh gee, it's been forever since I did this stuff, but I think if:

$v = v^1e_1 + v^2e_2 + v^3e_3$ (more compactly, $v = v^je_j$) and

$f = f_1e^1 + f_2e^2 + f_3e^3$ then:

$e^i \otimes e_j (v,f) = v^if_j$

so in this case:

$e^1 \otimes e_2 (v,f) = 1$

$e^2 \otimes (e_1 + 3e_3) (v,f) = (5)(1 + 3) = 20$

so that $F(v,f) = 21$ (assuming I have my "ups and downs" correct...it's been awhile).
 
Deveno said:
Oh gee, it's been forever since I did this stuff, but I think if:

$v = v^1e_1 + v^2e_2 + v^3e_3$ (more compactly, $v = v^je_j$) and

$f = f_1e^1 + f_2e^2 + f_3e^3$ then:

$e^i \otimes e_j (v,f) = v^if_j$

so in this case:

$e^1 \otimes e_2 (v,f) = 1$

$e^2 \otimes (e_1 + 3e_3) (v,f) = (5)(1 + 3) = 20$

so that $F(v,f) = 21$ (assuming I have my "ups and downs" correct...it's been awhile).

Thanks very much for the response. But can you please explain to me how you wrote,

\[e^i \otimes e_j (v,f) = v^if_j\]

I am new to tensors, so sorry if this is an obvious question. :)
 
The way I learned it, a tensor is a multilinear map:

$T:\underbrace{V \times \cdots \times V}_{n\ copies} \times \underbrace{V^{\ast} \times \cdots \times V^{\ast}}_{m\ copies} \to F$

We can, by the universality of the tensor product, regard $T$ as an element of:

$\underbrace{V^{\ast} \otimes \cdots \otimes V^{\ast}}_{n\ copies} \otimes \underbrace{V \otimes \cdots \otimes V}_{m\ copies}$

(here, we are implicitly identifying $V$ with $V^{\ast\ast}$).

In this case, $m = n = 1$, which makes our tensor particularly easy to understand. In this case, we have that any such tensor is a linear combination of elementary tensors of basis covectors and vectors. So it suffices to determine what:

$e^j \otimes e_i (v,u^{\ast})$ is, for any two vectors $u,v \in V$.

Typically, $\{e_1,\dots,e_n\}$ is the standard (Euclidean) basis for $F^n$, and $\{e^1,\dots,e^n\}$ is the dual basis; that is, the linear functionals:

$\displaystyle e^j(v) = e^j\left(\sum_{i = 1}^n v^ie_i \right) = v^j$

(the linear functional that returns the $j$-th coordinate of $v$ in the standard basis).

It is typical to regard $e_i$ as an $n \times 1$ (column) matrix, and $e^j$ as a $1 \times n$ (row) matrix, in which case their tensor product is given by their Kronecker product, the $n \times n$ matrix (written below in block form):

$\begin{bmatrix}0e_i&\dots&1e_i&\dots&0e_n \end{bmatrix}$


$= E_{ij}$, which has a 1 in the $i,j$-th entry, and 0's elsewhere. That is:

$e^j \otimes e_i (v,u^{\ast}) = u^TE_{ij}v = (u^{\ast})_iv^j$

(I hope I have my indices correct...I get these backwards a lot).

In this example, we have $V = F^3$ (as near as I can surmise), with:

$v = (1,5,4)$ (in the basis of $\{e_1,e_2,e_3\}$ and

$f = (1,1,1)^{\ast}$ (in the dual basis), so that:

$e^1 \otimes e_2(v,f)$ returns the product of the first coordinate of $v$ with the second coordinate of $f$.

(Tensor products become very unwieldy to explictly compute once m and n start to get larger than 2, as the number of operations to do gets rather large).
 
Deveno said:
The way I learned it, a tensor is a multilinear map:

$T:\underbrace{V \times \cdots \times V}_{n\ copies} \times \underbrace{V^{\ast} \times \cdots \times V^{\ast}}_{m\ copies} \to F$

We can, by the universality of the tensor product, regard $T$ as an element of:

$\underbrace{V^{\ast} \otimes \cdots \otimes V^{\ast}}_{n\ copies} \otimes \underbrace{V \otimes \cdots \otimes V}_{m\ copies}$

(here, we are implicitly identifying $V$ with $V^{\ast\ast}$).

In this case, $m = n = 1$, which makes our tensor particularly easy to understand. In this case, we have that any such tensor is a linear combination of elementary tensors of basis covectors and vectors. So it suffices to determine what:

$e^j \otimes e_i (v,u^{\ast})$ is, for any two vectors $u,v \in V$.

Typically, $\{e_1,\dots,e_n\}$ is the standard (Euclidean) basis for $F^n$, and $\{e^1,\dots,e^n\}$ is the dual basis; that is, the linear functionals:

$\displaystyle e^j(v) = e^j\left(\sum_{i = 1}^n v^ie_i \right) = v^j$

(the linear functional that returns the $j$-th coordinate of $v$ in the standard basis).

It is typical to regard $e_i$ as an $n \times 1$ (column) matrix, and $e^j$ as a $1 \times n$ (row) matrix, in which case their tensor product is given by their Kronecker product, the $n \times n$ matrix (written below in block form):

$\begin{bmatrix}0e_i&\dots&1e_i&\dots&0e_n \end{bmatrix}$


$= E_{ij}$, which has a 1 in the $i,j$-th entry, and 0's elsewhere. That is:

$e^j \otimes e_i (v,u^{\ast}) = u^TE_{ij}v = (u^{\ast})_iv^j$

(I hope I have my indices correct...I get these backwards a lot).

In this example, we have $V = F^3$ (as near as I can surmise), with:

$v = (1,5,4)$ (in the basis of $\{e_1,e_2,e_3\}$ and

$f = (1,1,1)^{\ast}$ (in the dual basis), so that:

$e^1 \otimes e_2(v,f)$ returns the product of the first coordinate of $v$ with the second coordinate of $f$.

(Tensor products become very unwieldy to explictly compute once m and n start to get larger than 2, as the number of operations to do gets rather large).

Thanks so much for the detailed explanation. It would take some time to sink in all the details you provided but I am learning slowly. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K