Understanding the Equipartition Theorem for Ideal Gases

AI Thread Summary
The discussion focuses on the application of the Equipartition theorem to ideal gases, specifically diatomic gases transitioning from low to high temperatures. At low temperatures, the gas exhibits three translational degrees of freedom, which increase to five with rotational motion and seven with vibrational motion as temperature rises. The internal energy calculations for each motion type are presented, with the user noting confusion about estimating temperature without known values for internal energy or temperature. The conversation emphasizes the need to use the Boltzmann constant instead of the gas constant for individual particle calculations. Ultimately, the user seeks clarification on the correct approach to solving the equations related to temperature estimation.
GravityX
Messages
19
Reaction score
1
Homework Statement
At what temperature does the degrees of freedom freeze (estimate)
Relevant Equations
none
Hi,

I am unfortunately stuck with the following task

Bildschirmfoto 2023-01-17 um 16.10.10.png

I started once with the hint that at very low temperatures the diatomic ideal gas behaves like monatomic gas and has only three degrees of freedom of translation ##f=3##. If you then excite the gas by increasing the temperature, you add two degrees of freedom of rotation, ##f=5## and if you then excite the gas even further, you add two more degrees of freedom of vibration ##f=7##.

The Equipartition theorem states that the internal energy is distributed equally among the degrees of freedom. The calculation of the internal energy for the ideal gas is ##U=\frac{3}{2}RT## for the translation, ##U=\frac{5}{2}RT## for the rotation and ##U=\frac{7}{2}RT## for the oscillation.

Unfortunately, I don't know either ##U## or ##T##, but I can't think of any other way to estimate the temperature.
 
Physics news on Phys.org
Did you use the provided hint for each type of motion?
 
Thanks vela for your help

I would now proceed as follows

Translation:##\frac{3}{2}RT=\frac{\pi^2 \hbar^2}{2ML^2}(n_x^2+n_y^2+n_z^2)##

Rotation: ##\frac{5}{2}RT=\frac{\pi^2 \hbar^2}{2ML^2}(n_x^2+n_y^2+n_z^2)+\frac{\hbar^2l(l+1)}{2\theta}##

Oscillation: ##\frac{7}{2}RT=\frac{\pi^2 \hbar^2}{2ML^2}(n_x^2+n_y^2+n_z^2)+\frac{\hbar^2l(l+1)}{2\theta}+\hbar\omega(n+\frac{1}{2})##

Now I can solve the individual equations according to the temperature with

For translation, ##n_x^2,n_y^2,n_z^2=1##
For rotation ##n_x^2,n_y^2,n_z^2=2## and ##l=1##
During oscillation ##n_x^2,n_y^2,n_z^2=2## , ##l=1## and ##n=1##
 
The Hamiltonian is for a single particle, so you want to use the Boltzmann constant, not the gas constant.
 
Thanks vela for your help 👍

So ##\frac{3}{2}k_bT## instead of ##\frac{3}{2}RT##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top