MHB Understanding the Equivalence in Diophantine Relations

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am reading the following part of the paper of Denef (http://www.ams.org/journals/tran/1978-242-00/S0002-9947-1978-0491583-7/S0002-9947-1978-0491583-7.pdf):

Let $R$ be a commutative ring with unity and let $D(x_1,\dots , x_n)$ be a relation in $R$. We say that $D (x_1,\dots , x_n)$ is diophantine over $R$ if there exists a polynomial $P(x_1,\dots , x_n,y_1,\dots ,y_m)$ over $R$ such that for all $x_1,\dots , x_n$ in $R$ : $$D(x_1, \dots , x_n) \leftrightarrow \exists y_1, \dots , y_m \in R : P(x_1, \dots , x_n, y_1, \dots , y_m)=0$$

Let $R'$ be a subring of $R$ and suppose $P$ can be chosen such that its coefficients lay in $R'$, then we say that $D (x_1,\dots , x_n)$ is diophantine over $R$ with coefficients in $R'$.

Proposition 1.
Let $R$ be an integral domain of characteristic zero. Suppose there exists a subset $S$ of $R$ which contains $\mathbb{Z}$ and which is diophantine over $R[T]$; then $\mathbb{Z}$ is diophantine over $R[T]$.
In particular, this is true when $R$ contains $\mathbb{Q}$. A relation is diophantine over $\mathbb{Z}[T]$ if and only if it is recursively enumerable. Corollary (M. Boffa).
Every subset $D$ of $\mathbb{N}$ is diophantine over $R[T]$. Proof.
Let $r$ be the real number $r = \sum_{n=0}^{\infty}\frac{a_n}{10^{n+1}}$, where $a_n = 0$ for $n \in D$ and $a_n = 1$ for $n \notin D$.
Then we have
$$n \in D \leftrightarrow n \in N \land \exists p, m \in N: \left (m = 10^n \land 0 \leq mr - p < \frac{1}{10}\right )$$
But $\mathbb{Z}$ is diophantine over $R[T]$ by Proposition $1$, and every recursively enumerable relation in $\mathbb{Z}$ is diophantine over $\mathbb{Z}$. Thus, using elementary algebra, we see that $D$ is diophantine over $R[T]$.
I haven't understood the equivalence: $n \in D \leftrightarrow n \in N \land \exists p, m \in N: \left (m = 10^n \land 0 \leq mr - p < \frac{1}{10}\right )$

When $n \in D$ we have that $a_n=0$.

$r=\sum_{i=0}^{\infty}\frac{a_i}{10^{i+1}} \geq 0$ since the numeratoe is always $0$ or $1$.

We take $m=10^n$ so $mr=\sum_{i=0}^{\infty}\frac{a_i}{10^{i+1-n}}$.

Since $a_n=0$ we don't get the term $\frac{1}{10}$ at the sum.

But how do we know that there is a $p\in \mathbb{N}$ such that $mr - p < \frac{1}{10}$ ?
 
Physics news on Phys.org
I can't say I fully understand all the business about rings and so on, but with respect to the number $r$, I think it might be helpful to write it out. So we suppose $n\in D$, which means that $a_n=0$. Further, we have
$$r=0.a_1a_2a_3a_4a_5\dots a_{n-1}0a_{n+1}\dots$$
Then we have $m=10^n$. And here, I think, is the problem. If you want to guarantee $mr-p<\frac{1}{10}$, then I think it should be $m=10^{n-1}$. Because when we multiply $r$ by $m$, I get
$$mr=a_1a_2a_3\dots a_{n-1}0.a_{n+1}\dots$$
Now $p\in \mathbb{N}$, so the best you can hope for is to knock off the integer part of $mr$. On the other hand, if you had multiplied by $10^{n-1}$, you'd have gotten
$$mr=a_1a_2a_3\dots a_{n-1}.0a_{n+1}\dots,$$
and now, you see, if you subtract off $p=a_1a_2a_3\dots a_{n-1},$ you get something smaller than $1/10$.

Alternatively, if the authors meant to have $mr-p<1$, that would also be possible. But unless the authors can also control $a_{n+1}$, I'm not sure I see how they can do that.

Does this help?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top