Understanding the Equivalence in Diophantine Relations

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the concept of Diophantine relations within the context of commutative rings, specifically referencing Denef's paper. It establishes that a relation \(D(x_1, \dots, x_n)\) is Diophantine over a ring \(R\) if there exists a polynomial \(P\) such that \(D\) can be expressed in terms of existential quantifiers over \(R\). The participants analyze a specific equivalence involving subsets of \(\mathbb{N}\) and the conditions under which these relations hold, particularly emphasizing the role of the integral domain \(R\) and the polynomial coefficients. The discussion highlights the intricacies of proving the equivalence and the necessary conditions for the existence of certain integers.

PREREQUISITES
  • Understanding of commutative rings and their properties.
  • Familiarity with Diophantine equations and relations.
  • Knowledge of integral domains and their characteristics.
  • Basic concepts of existential quantification in mathematical logic.
NEXT STEPS
  • Study the properties of commutative rings with unity, focusing on examples like \(\mathbb{Z}\) and \(\mathbb{Q}\).
  • Explore Diophantine equations in more depth, particularly in the context of integral domains.
  • Investigate the implications of recursively enumerable sets in relation to Diophantine relations.
  • Review the concept of polynomial functions and their role in defining relations over rings.
USEFUL FOR

Mathematicians, particularly those specializing in algebra and number theory, as well as students studying advanced topics in commutative algebra and logic. This discussion is beneficial for anyone looking to deepen their understanding of Diophantine relations and their applications in mathematical theory.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am reading the following part of the paper of Denef (http://www.ams.org/journals/tran/1978-242-00/S0002-9947-1978-0491583-7/S0002-9947-1978-0491583-7.pdf):

Let $R$ be a commutative ring with unity and let $D(x_1,\dots , x_n)$ be a relation in $R$. We say that $D (x_1,\dots , x_n)$ is diophantine over $R$ if there exists a polynomial $P(x_1,\dots , x_n,y_1,\dots ,y_m)$ over $R$ such that for all $x_1,\dots , x_n$ in $R$ : $$D(x_1, \dots , x_n) \leftrightarrow \exists y_1, \dots , y_m \in R : P(x_1, \dots , x_n, y_1, \dots , y_m)=0$$

Let $R'$ be a subring of $R$ and suppose $P$ can be chosen such that its coefficients lay in $R'$, then we say that $D (x_1,\dots , x_n)$ is diophantine over $R$ with coefficients in $R'$.

Proposition 1.
Let $R$ be an integral domain of characteristic zero. Suppose there exists a subset $S$ of $R$ which contains $\mathbb{Z}$ and which is diophantine over $R[T]$; then $\mathbb{Z}$ is diophantine over $R[T]$.
In particular, this is true when $R$ contains $\mathbb{Q}$. A relation is diophantine over $\mathbb{Z}[T]$ if and only if it is recursively enumerable. Corollary (M. Boffa).
Every subset $D$ of $\mathbb{N}$ is diophantine over $R[T]$. Proof.
Let $r$ be the real number $r = \sum_{n=0}^{\infty}\frac{a_n}{10^{n+1}}$, where $a_n = 0$ for $n \in D$ and $a_n = 1$ for $n \notin D$.
Then we have
$$n \in D \leftrightarrow n \in N \land \exists p, m \in N: \left (m = 10^n \land 0 \leq mr - p < \frac{1}{10}\right )$$
But $\mathbb{Z}$ is diophantine over $R[T]$ by Proposition $1$, and every recursively enumerable relation in $\mathbb{Z}$ is diophantine over $\mathbb{Z}$. Thus, using elementary algebra, we see that $D$ is diophantine over $R[T]$.
I haven't understood the equivalence: $n \in D \leftrightarrow n \in N \land \exists p, m \in N: \left (m = 10^n \land 0 \leq mr - p < \frac{1}{10}\right )$

When $n \in D$ we have that $a_n=0$.

$r=\sum_{i=0}^{\infty}\frac{a_i}{10^{i+1}} \geq 0$ since the numeratoe is always $0$ or $1$.

We take $m=10^n$ so $mr=\sum_{i=0}^{\infty}\frac{a_i}{10^{i+1-n}}$.

Since $a_n=0$ we don't get the term $\frac{1}{10}$ at the sum.

But how do we know that there is a $p\in \mathbb{N}$ such that $mr - p < \frac{1}{10}$ ?
 
Physics news on Phys.org
I can't say I fully understand all the business about rings and so on, but with respect to the number $r$, I think it might be helpful to write it out. So we suppose $n\in D$, which means that $a_n=0$. Further, we have
$$r=0.a_1a_2a_3a_4a_5\dots a_{n-1}0a_{n+1}\dots$$
Then we have $m=10^n$. And here, I think, is the problem. If you want to guarantee $mr-p<\frac{1}{10}$, then I think it should be $m=10^{n-1}$. Because when we multiply $r$ by $m$, I get
$$mr=a_1a_2a_3\dots a_{n-1}0.a_{n+1}\dots$$
Now $p\in \mathbb{N}$, so the best you can hope for is to knock off the integer part of $mr$. On the other hand, if you had multiplied by $10^{n-1}$, you'd have gotten
$$mr=a_1a_2a_3\dots a_{n-1}.0a_{n+1}\dots,$$
and now, you see, if you subtract off $p=a_1a_2a_3\dots a_{n-1},$ you get something smaller than $1/10$.

Alternatively, if the authors meant to have $mr-p<1$, that would also be possible. But unless the authors can also control $a_{n+1}$, I'm not sure I see how they can do that.

Does this help?
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
Replies
22
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K