Understanding the given proof of integers - Ring theory

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Integers Proof
Click For Summary

Homework Help Overview

The discussion revolves around a proof related to integers within the context of ring theory, specifically examining the relationship between the product of two integers and their greatest common divisor and least common multiple.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the conditions under which the inequality ##mn<(m,n)[m,n]## holds, with some questioning the validity of this inequality in light of the proof's conclusion that it is an equality. Examples are provided to illustrate points.

Discussion Status

There is an ongoing examination of the proof's statements, with some participants expressing confusion over the implications of the inequalities presented. Clarifications regarding the relationship between the inequalities and equality are being discussed, but no consensus has been reached.

Contextual Notes

Participants are working within the constraints of ring theory and are referencing specific mathematical properties related to integers, greatest common divisors, and least common multiples. The discussion includes references to specific examples and theorems relevant to the topic.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached
Relevant Equations
Ring Theory
My interest is on the highlighted part ...

1691205092323.png


1691205125883.png


Now to my question,

in what cases do we have ##mn<(m,n)[m,n]?##

I was able to use my example say,
Let ##m=24## and ##n=30## for example, then
##[m,n]=120## and ##(m,n)=6## in this case we can verify that,
##720=6⋅120## implying that, ##mn≤ (m,n)[m,n]##.
 
Physics news on Phys.org
chwala said:
Now to my question,

in what cases do we have ##mn<(m,n)[m,n]?##
This is a strange question, in the very next line the finish the proof, that it is an equality.
 
martinbn said:
This is a strange question, in the very next line the finish the proof, that it is an equality.
I get your point the last line indicates an equal sign. However, ...the preceding line states that,
"Therefore, it must be less than the greatest common divisor'... on the contrary should it not be 'Therefore, it is equal to the greatest common divisor'? Unless there are cases where the inequality applies.
 
chwala said:
Homework Statement: see attached
Relevant Equations: Ring Theory

My interest is on the highlighted part ...

View attachment 330141

View attachment 330142

Now to my question,

in what cases do we have ##mn<(m,n)[m,n]?##
Never. We have ##\geq## and ##\leq## making it ##=## and completing the proof.

chwala said:
I was able to use my example say,
Let ##m=24## and ##n=30## for example, then
##[m,n]=120## and ##(m,n)=6## in this case we can verify that,
##720=6⋅120## implying that, ##mn≤ (m,n)[m,n]##.
The location with your red mark comes from ##a\leq b \Longrightarrow a\cdot c\leq b\cdot c## in case ##c\geq 0.## With ##a=\dfrac{mn}{[m,n]}\, , \,b=(m,n)## and ##c=[m,n]## we get what is written.
 
  • Like
Likes   Reactions: chwala
fresh_42 said:
Never. We have ##\geq## and ##\leq## making it ##=## and completing the proof.The location with your red mark comes from ##a\leq b \Longrightarrow a\cdot c\leq b\cdot c## in case ##c\geq 0.## With ##a=\dfrac{mn}{[m,n]}\, , \,b=(m,n)## and ##c=[m,n]## we get what is written.
I can now see that two proofs that involve the inequalities ##[≤]## and ##[≥]## in general imply ##[=]##, thus concluding the proof. Clear now...
 
  • Like
Likes   Reactions: fresh_42
chwala said:
I can now see that two proofs that involve the inequalities ##[≤]## and ##[≥]## in general imply ##[=]##, thus concluding the proof. Clear now...
This is a standard way of proving that two quantities are equal. If you can show that ##a \le b## and that ##a \ge b##, then you can conclude that a = b.
 
  • Like
Likes   Reactions: chwala
chwala said:
I can now see that two proofs that involve the inequalities ##[≤]## and ##[≥]## in general imply ##[=]##, thus concluding the proof. Clear now...
It is the same method that is usually used to show that two sets ##A## and ##B## are equal. We show ##A\subseteq B## (##a\in A \Longrightarrow a\in B##) and ##B\subseteq A## (##b\in B \Longrightarrow b\in A##) and conclude ##A=B.##
 
Last edited:
  • Like
Likes   Reactions: SammyS and chwala

Similar threads

Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K