MHB Understanding the Horizontal Shift in Logarithmic Functions

  • Thread starter Thread starter zekea
  • Start date Start date
  • Tags Tags
    Log Translation
AI Thread Summary
The discussion focuses on the horizontal and vertical shifts in the logarithmic function expressed as log 3 (x+9) + 2 = y. The initial interpretation suggests a horizontal translation of 9 units left and a vertical translation of 2 units up. However, upon manipulating the equation to log 3 (x+9) = y - 2 and converting to exponential form, it appears to indicate a horizontal shift of 2 units right and a vertical shift of 9 units down. The confusion arises from the interpretation of x+9 as a horizontal shift rather than a vertical translation. Clarification is provided through graphing, demonstrating that the point where x+9 equals 1 results in a shift of the graph to the left by 9 units.
zekea
Messages
3
Reaction score
0
If we have log 3 (x+9) + 2 = y. It states that we have a HT 9 units left and 2 units up. But if we manipulate that too

log 3 (x+9) = y - 2

And convert to Exp form. This gives me

3^(y-2) = x + 9 or 3^(y-2) - 9 = x

This looks to me more like a HT 2 units right and a vt 9 units down. I don't understand why x+9 is a HT when changing to exp form it looks like your K value (Vertical Translation)
 
Mathematics news on Phys.org
zekea said:
If we have log 3 (x+9) + 2 = y. It states that we have a HT 9 units left and 2 units up. But if we manipulate that too

log 3 (x+9) = y - 2

And convert to Exp form. This gives me

3^(y-2) = x + 9 or 3^(y-2) - 9 = x

This looks to me more like a HT 2 units right and a vt 9 units down. I don't understand why x+9 is a HT when changing to exp form it looks like your K value (Vertical Translation)

Hi zekea!

Lets take a look at this graph.

[desmos]y=log_3 (x+9) + 2 [/desmos]

All of the math you did with transforming the starting equation is correct, but maybe I can help you see why we have a horizontal shift.

Let's start with just $y=\log(x)$. You can plot that in the interactive graph in this post if you like. An easy point on this graph to get is $\log(1)$. This is 0 for any base, meaning $\log_2(1)=\log_3(1)=\log_{\pi}(1)=0$. So on this graph we have the point (1,0). Now what about $\log(x+9)$? When $x+9=1$ or $x=-8$ we get the $\log(x+(-8))=\log(1)=0$. How does this compare to our starting point of $\log(x)$? We get the same y-value when we shift the x-value 9 units to the left.

If you play around with values on the graph you'll see this kind of behavior. Does that help at all? :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top