MHB Understanding the Linear Independence of Columns in a 3x5 Matrix

annie122
Messages
51
Reaction score
0
If A is a 3x5 matrix, explain why the columns of A must
be linearly independent.

i thought if A is 3x5, the columns of A must be linearly dependent, since
the rank is at most 3, and the rank is the number of linearly independent columns in A.
but there are 5 columns in A, so the columns of A must be linearly dependent :/
 
Physics news on Phys.org
Yuuki said:
i thought if A is 3x5, the columns of A must be linearly dependent, since
the rank is at most 3, and the rank is the number of linearly independent columns in A.
but there are 5 columns in A, so the columns of A must be linearly dependent :/
Correct! (Yes) (You might perhaps have added that the rank is also the number of linearly independent rows in A, which is why the rank is at most 3.)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top