I Understanding the Role of the Identity Map in Fundamental Group Theory

  • I
  • Thread starter Thread starter Mikaelochi
  • Start date Start date
  • Tags Tags
    Identity Proof
Mikaelochi
Messages
40
Reaction score
1
TL;DR Summary
Another problem from a topology course I took and never really got
HW9Q4.png

So, this problem I sort of get conceptually but I don't know how I can possibly rewrite (idX)∗ : π1(X) → π1(X). Does this involve group theory? It's supposed to be simple but I honestly I don't see how. Again, any help is greatly appreciated. Thanks.
 
Physics news on Phys.org
If f : X \to Y is continuous, then f_{*} : \pi_1(X) \to \pi_1(Y) is defined by f_{*}(\gamma) : [0,1] \to Y : t \mapsto (f \circ \gamma)(t) for each \gamma \in \pi_1(X).

If X = Y and f is the identity on X, then f_{*}(\gamma) = \gamma and f_{*} is the identity on \pi_1(X).
 


Hi there! I can understand your confusion with rewriting (idX)* : π1(X) → π1(X). It might help to think of it in terms of group theory. Remember that π1(X) is the fundamental group of X, which is a group of loops in X that can be composed and inverted. So (idX)* is simply the identity map on the fundamental group, which just takes each loop to itself. This may seem trivial, but it becomes important when studying homotopy and homotopy equivalence.

Now, to rewrite this, you can think of it as (idX)* : G → G, where G is the fundamental group of X. This is a homomorphism from G to itself, which means it preserves the group structure. In other words, it takes the composition and inversion of loops in G to the composition and inversion of loops in G. So, in a way, it is just a fancy way of saying that (idX)* is the identity map on the fundamental group.

I hope this helps! Let me know if you have any other questions.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top