Uniform Continuity and Cauchy Sequences

Click For Summary

Discussion Overview

The discussion revolves around the concepts of uniform continuity and Cauchy sequences, particularly in the context of proving equivalences related to continuous functions on bounded sets and demonstrating the uniform continuity of the function $$f(x) = \sqrt{x}$$ on the interval $$[0, \infty)$$. Participants explore definitions, theorems, and various approaches to tackle the problems presented.

Discussion Character

  • Homework-related
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about how to apply the definition of uniform continuity to prove the equivalence of conditions regarding the function $$f$$ on a bounded set $$S$$.
  • Another participant suggests a revision to condition (b) to clarify that it should state the possibility of extending $$f$$ to a continuous function on the closure $$\overline{S}$$ of $$S$$, arguing that this leads to a straightforward proof of the equivalence.
  • Some participants discuss the implications of uniform continuity, noting that it ensures Cauchy sequences remain Cauchy and converge, which is essential for extending functions to their limits.
  • One participant proposes an alternative approach to proving uniform continuity for $$f(x) = \sqrt{x}$$ by splitting the interval into two parts, while another emphasizes the need to show uniform continuity on both segments for different reasons.
  • There is a discussion about a theorem related to uniform continuity that states if $$f$$ is uniformly continuous on $$S$$, then for sequences converging to the same point, the limits of their images under $$f$$ must be equal, prompting questions about its application alongside Cauchy sequences.
  • Participants share their experiences with textbooks and the challenges of finding relevant definitions and theorems, leading to a collaborative effort to clarify the necessary concepts for the problems at hand.

Areas of Agreement / Disagreement

Participants generally agree on the need to clarify the conditions for uniform continuity and the extension of functions, but there is no consensus on the best approach to proving the problems, as multiple methods and interpretations are presented.

Contextual Notes

Some participants note that their textbooks do not cover Cauchy sequences adequately, leading to uncertainty about their application in the context of uniform continuity. There are also discussions about the need for certain results to establish the well-defined nature of function extensions.

Who May Find This Useful

This discussion may be useful for students studying real analysis, particularly those grappling with concepts of continuity, Cauchy sequences, and their implications in proofs related to function behavior on bounded sets.

Enzipino
Messages
12
Reaction score
0
Hello,

I've been attempting to do these problems from my textbook:

1. Suppose that $$f$$ is a continuous function on a bounded set $$S$$. Prove that the
following two conditions are equivalent:
(a) The function $$f$$ is uniformly continuous on $$S$$.
(b) It is possible to extend $$f$$ to a continuous function on the set $$S$$.

2. Let $$f:[0, \infty)\to\Bbb{R}$$ be defined by $$f(x) = \sqrt{x}.$$ Prove that $$f$$ is uniformly continuous on $$[0, \infty)$$

For #1, I don't know what I'm supposed to do. I know the definition of uniform continuity but I just don't know how to go about using it for this.

For #2, I did some extra scratch work and what I did was:
$$\left| f(t)-f(x) \right| = \left| \sqrt{t}-\sqrt{x} \right| \le {\left| \sqrt{t}-\sqrt{x} \right|}^{2} \le \left| \sqrt{t}-\sqrt{x} \right|\left| \sqrt{t}+\sqrt{x} \right| = \left| t-x \right|<\delta$$ but now I don't know what to let my $$\delta$$ be so that it works out.
 
Last edited:
Physics news on Phys.org
Enzipino said:
1. Suppose that $$f$$ is a continuous function on a bounded set $$S$$. Prove that the following two conditions are equivalent:
(a) The function $$f$$ is uniformly continuous on $$S$$.
(b) It is possible to extend $$f$$ to a continuous function on the set $$S$$.
Hi Enzipino and welcome to MHB!

I think there must be something missing from condition (b). If $f$ is already defined on $S$, you don't need any extension to define it on $S$! I suspect that (b) should say
(b) It is possible to extend $$f$$ to a continuous function on the closure $\overline{S}$ of $$S$$.​
Given that revised form of (b), it is then easy to see that (a) follows. In fact, $\overline{S}$ is compact (in other words, closed and bounded), and a continuous function on a compact set is always uniformly continuous.

To go from (a) to the revised (b), use the fact that a uniformly continuous function takes Cauchy sequences to Cauchy sequences. Then, given $x \in \overline{S},$ there exists a sequence $\{x_n\}$ in $S$ with $x_n\to x$ as $n\to\infty$. Deduce that $\{f(x_n)\}$ is a Cauchy sequence and must therefore be convergent. Define $f(x)$ to be the limit of that sequence.

Enzipino said:
2. Let $$f:[0, \infty)\to\Bbb{R}$$ be defined by $$f(x) = \sqrt{x}.$$ Prove that $$f$$ is uniformly continuous on $$[0, \infty)$$
The easiest way to do this is to split the interval $[0, \infty)$ into two pieces, $[0,1]$ and $[1, \infty)$. Show that $f$ is uniformly continuous on each of these (for different reasons!).
 
Enzipino said:
$$\left| f(t)-f(x) \right| = \left| \sqrt{t}-\sqrt{x} \right| \le {\left| \sqrt{t}-\sqrt{x} \right|}^{2}[/math]
The last inequality does not necessarily hold.

Another way to prove statement 2 is the following.

Let $n$ be a positive integer and $p,q$ positive real numbers. Then $p^n+q^n\le (p+q)^n$. Substituting $p=x^{1/n}$ and $q=(y-x)^{1/n}$ where $0\le x\le y$, we get
\begin{align}
&y=x+(y-x)\le \left(x^{1/n}+(y-x)^{1/n}\right)^n\\
&\implies y^{1/n}\le x^{1/n}+(y-x)^{1/n}&&\text{raising both sides to }1/n\\
&\implies\quad0\le y^{1/n}-x^{1/n}\le (y-x)^{1/n}
\end{align}
 
Opalg said:
Hi Enzipino and welcome to MHB!

I think there must be something missing from condition (b). If $f$ is already defined on $S$, you don't need any extension to define it on $S$! I suspect that (b) should say
(b) It is possible to extend $$f$$ to a continuous function on the closure $\overline{S}$ of $$S$$.​
Given that revised form of (b), it is then easy to see that (a) follows. In fact, $\overline{S}$ is compact (in other words, closed and bounded), and a continuous function on a compact set is always uniformly continuous.

To go from (a) to the revised (b), use the fact that a uniformly continuous function takes Cauchy sequences to Cauchy sequences. Then, given $x \in \overline{S},$ there exists a sequence $\{x_n\}$ in $S$ with $x_n\to x$ as $n\to\infty$. Deduce that $\{f(x_n)\}$ is a Cauchy sequence and must therefore be convergent. Define $f(x)$ to be the limit of that sequence.

Ah yes, I apologize. It is $\overline{S}$. Thank you very much for the hint! I don't recall covering Cauchy Sequences in my intro class so I will have to read up on it but I do see where I can go with it now.
 
I was just looking through my textbook to brush up on Cauchy sequences since I was planning on using it for this problem but my book utterly leaves it out. But I did come across this Theorem:
Suppose that $$f$$ is a function and $$f:S\to\Bbb{R}$$. If $$f$$ is uniformly continuous on $$S$$ then, given any two sequences $$({x}_{n})$$ and $$({t}_{n})$$ in $S$ such that ${t}_{n}-{x}_{n}\to 0$ as $n\to \infty$, we have $f({t}_{n})-f({x}_{n})\to 0$ as $n\to \infty$

Could I use this instead of a Cauchy Sequence? Or use it alongside Cauchy sequences?
 
Last edited:
Enzipino said:
I was just looking through my textbook to brush up on Cauchy sequences since I was planning on using it for this problem but my book utterly leaves it out. But I did come across this Theorem:
Suppose that $$f$$ is a function and $$f:S\to\Bbb{R}$$. If $$f$$ is uniformly continuous on $$S$$ then, given any two sequences $$({x}_{n})$$ and $$({t}_{n})$$ in $S$ such that ${t}_{n}-{x}_{n}\to 0$ as $n\to \infty$, we have $f({t}_{n})-f({x}_{n})\to 0$ as $n\to \infty$

Could I use this instead of a Cauchy Sequence? Or use it alongside Cauchy sequences?
That Theorem is needed in my approach to the problem, to show that the extension of $f$ to $\overline S$ is well-defined. In other words, if you take two different sequences $\{x_n\}$ and $\{t_n\}$ converging to the same point $x\in\overline S$ then $\lim_{n\to\infty}\{f(x_n)\} = \lim_{n\to\infty}\{f(t_n)\}$.

But you still need a result about Cauchy sequences in order to deduce that those limits exist at all.
 
Enzipino said:
2. Let $$f:[0, \infty)\to\Bbb{R}$$ be defined by $$f(x) = \sqrt{x}.$$ Prove that $$f$$ is uniformly continuous on $$[0, \infty)$$

Following Opalg's hint, you have $$[0,1]$$ is a compact set and $$f$$ is clearly continuous on $$[0,1].$$ Does that ring any bell?

Besides, proving uniform continuity on $$[1,\infty)$$ follows easily by definition.
 
Opalg said:
That Theorem is needed in my approach to the problem, to show that the extension of $f$ to $\overline S$ is well-defined. In other words, if you take two different sequences $\{x_n\}$ and $\{t_n\}$ converging to the same point $x\in\overline S$ then $\lim_{n\to\infty}\{f(x_n)\} = \lim_{n\to\infty}\{f(t_n)\}$.

But you still need a result about Cauchy sequences in order to deduce that those limits exist at all.

So I was pulling my hair out at Barnes and Noble doing this problem because I was completely unsure if I could just use Cauchy Sequences to prove this problem since my textbook is mean and likes to not name certain things. I decided to go back and look at some of the previous problems in the book and whadda you know, I found these two example problems:

a) Prove that if $f$ is uniformly continuous on a set $S$ and $\{x_n\}$ is a convergent sequence in $S$, then the sequence $(f({x}_{n}))$ is also convergent. (AKA the Cauchy Sequence)​

b) Suppose that $f$ is uniformly continuous on a set $S$, that $x$ is a real number and that $\{x_n\}$ and $\{t_n\}$ are sequences in S that converge to the number $x$. Prove that $\lim_{n\to\infty}\{f(x_n)\} = \lim_{n\to\infty}\{f(t_n)\}$ (AKA the freaking result that I needed).​

Of course, knowing my professor in order for me to use this, I have to first prove it but that doesn't seem to hard because if I can prove the first one then the second one pretty much follows and then with that I can just do:

Suppose $\{x_n\}$,$\{t_n\}$$\in S$ such that ${x}_{n}-{t}_{n}\to0$ and let $\varepsilon>0$. From the theorem I posted before, we have that $f({x}_{n})-f({t}_{n})\to0$ as $n\to\infty$. Now, let $x\in\overline S$ and suppose $\{x_n\}$,$\{t_n\}$ both converge to $x$. By (a), their functions must also be convergent to $f(x)$. Then by (b), $\lim_{n\to\infty}f(x_n) = \lim_{n\to\infty}f(t_n)$.​

P.S. I really appreciate all the help Opalg.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K