Dear All,(adsbygoogle = window.adsbygoogle || []).push({});

In general eigenvalue problem solutions we obtain the eigenvalues along with eigenvectors. Eigenvalues are unique for each individual problem but eigenvectors are not, since the case is like that how we can rely that solution based on the eigenvector is correct. Because if solution is X(eigenvectors) then 10*X, 20*X, 30*X, etc..will also conform with (K-w^{2}*M)*X=0 eigenvalue problem. And sometimes we use those eigenvectors to find exact solution e.g. K*X = F and how reliable can be those solution even if the eigenvector is normalised?

Regards,

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Uniqueness of eigenvectors and reliability

**Physics Forums | Science Articles, Homework Help, Discussion**