I Unit Conversions of Force: How to Convert Between Different Units of Force?

kokofaen
Messages
2
Reaction score
0
TL;DR Summary
Kg to dg, m to cm and s to ms
Hello.
Im studying for an exam and came across this simple unit conversion question but I haven't done something like this in a long time! I understand the conversions of each unit individually but get a bit stuck combining them. This is the question:

A force of 100 N is exerted on an object with the base units of Kg∙m∙(s)^-2
Express this in dg∙cm∙(ms)^−2

The answer:
100 dg∙cm∙(ms)^−2 = 1.0 x 10^2(dg∙cm∙(ms)^−2)

Could someone please explain why the converted answer is still simply 100 when the units have been converted to different degrees (e.g. 1kg =10,000 dg vs 1m =100cm)? Thank you!
 
Mathematics news on Phys.org
You also have to convert seconds to milliseconds.
 
Welcome to PF.

kokofaen said:
the units have been converted to different degrees
What is "dg" as a unit? Degrees? Decigrams? Something else?

Assuming from your equations that dg is decigrams, how many decigrams per kilogram? Remember that when converting units, one of the best ways is to just multiply through by terms that are "1" in value, but have both sets of units (the old ones and the new ones) expressed as a fraction. For example, if you want to convert some number of seconds to hours, you would do this:
$$7200 [seconds] = 7200 [seconds] \times 1 = 7200 [seconds] \frac{1 [hour]}{3600 [seconds]} = 2 [hour]$$
 
  • Like
  • Love
Likes Mark44, Lnewqban, phyzguy and 1 other person
berkeman said:
What is "dg" as a unit? Degrees? Decigrams? Something else?

Assuming from your equations that dg is decigrams, how many decigrams per kilogram? Remember that when converting units, one of the best ways is to just multiply through by terms that are "1" in value, but have both sets of units (the old ones and the new ones) expressed as a fraction. For example, if you want to convert some number of seconds to hours, you would do this:
$$7200 [seconds] = 7200 [seconds] \times 1 = 7200 [seconds] \frac{1 [hour]}{3600 [seconds]} = 2 [hour]$$
Hi, yes thank you for that.
The unit is decigrams.

So based on what you've said, would the working for this equation look like this:
1 kg = 10,000 dg
1 m = 100 cm
1 s = 1000 ms

Screenshot 2023-12-15 at 11.56.17 am.png


Also could I clarify that the reason the seconds and milliseconds are the reciprocal of the other units (which have the units converting TO as the numerator and FROM as the denominator) is because the units for newtowns are S^-2 or ms^-2 respectively?
 
Ĺ
kokofaen said:
Hi, yes thank you for that.
The unit is decigrams.

So based on what you've said, would the working for this equation look like this:
1 kg = 10,000 dg
1 m = 100 cm
1 s = 1000 ms

View attachment 337223

Also could I clarify that the reason the seconds and milliseconds are the reciprocal of the other units (which have the units converting TO as the numerator and FROM as the denominator) is because the units for newtowns are S^-2 or ms^-2 respectively?
If a particle moves at ##1m/s##, then that is only ##0.001 m## per millisecond. Or ##1## millimeter per millisecond. ##1 m/s## is certainly not the same as ##1km## per millisecond.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top